The accuracy of sediment loads when log-transformation produces nonlinear sediment load–discharge relationships

Most sediment loads are estimated from sediment-rating curves created by performing a linear least-square regression on log-transformed sediment load–discharge data. When log-transformed sediment load–discharge data plots result in concave or convex curves, such regressions under- or overestimate se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2007-04, Vol.336 (3), p.250-268
Hauptverfasser: Crowder, D.W., Demissie, M., Markus, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 3
container_start_page 250
container_title Journal of hydrology (Amsterdam)
container_volume 336
creator Crowder, D.W.
Demissie, M.
Markus, M.
description Most sediment loads are estimated from sediment-rating curves created by performing a linear least-square regression on log-transformed sediment load–discharge data. When log-transformed sediment load–discharge data plots result in concave or convex curves, such regressions under- or overestimate sediment loads. Conflicting results exist regarding the accuracy/utility of using nonlinear regression to estimate loads. A nonlinear regression technique (optimized/constrained two different ways) was compared with the linear regression method at 26 United States Geological Survey gaging stations throughout the Upper Mississippi River basin. Sensitivity analyses were conducted at two stations, one having a concave sediment load–discharge plot and one having a convex sediment load–discharge plot, to determine each rating curve’s ability, based on varying amounts of data, to predict annual and cumulative suspended sediment yields. With a 5-year calibration dataset, a nonlinear maximized r 2 statistic curve produced the best estimates for a station with a convex sediment load–discharge relationship, while a nonlinear load-constrained curve produced the best estimates for a station with a concave sediment load–discharge relationship. At both stations (using 5-year calibration datasets), annual yield errors ranged from −54% to 112%, while 15- and 18-year cumulative yield errors ranged from about −21% to 13%.
doi_str_mv 10.1016/j.jhydrol.2006.12.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20404724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002216940600672X</els_id><sourcerecordid>20404724</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-a23ebeee637cbe242a20983c19584e874cbae204ac68825f8b7ec4903dd2768d3</originalsourceid><addsrcrecordid>eNqFkMtuEzEUhi0EEqH0ESpmA7sZji-xZ1YIVdykSixo19aJfSbjaDJO7Qkou75D35AnwU0iIVacjc_i-49_fYxdcWg4cP1-02yGg09xbASAbrhoQKhnbMFb09XCgHnOFgBC1Fx36iV7lfMGykipFuz-dqAKndsndIcq9lUmH7Y0zdUY0efq10BTWdf1nHDKfUxbnEOcql2Kfu8oV1OcxjARpn-Tvx8efchuwLSmKtF4TOUh7PJr9qLHMdPl-b1gd58_3V5_rW--f_l2_fGmRsXNXKOQtCIiLY1bkVACBXStdLxbtopao9wKSYBCp9tWLPt2ZcipDqT3wujWywv27nS3VL3fU57tthSiccSJ4j7bkgVlhCrg8gS6FHNO1NtdCltMB8vBPgm2G3sWbJ8EWy4sHHNvzx9gdjj2RZAL-W-41UKDhMK9OXE9RovrVJi7HwK4BDCaL4-XPpwIKj5-Bko2u0CTK0ITudn6GP7T5Q_IJ6El</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20404724</pqid></control><display><type>article</type><title>The accuracy of sediment loads when log-transformation produces nonlinear sediment load–discharge relationships</title><source>Access via ScienceDirect (Elsevier)</source><creator>Crowder, D.W. ; Demissie, M. ; Markus, M.</creator><creatorcontrib>Crowder, D.W. ; Demissie, M. ; Markus, M.</creatorcontrib><description>Most sediment loads are estimated from sediment-rating curves created by performing a linear least-square regression on log-transformed sediment load–discharge data. When log-transformed sediment load–discharge data plots result in concave or convex curves, such regressions under- or overestimate sediment loads. Conflicting results exist regarding the accuracy/utility of using nonlinear regression to estimate loads. A nonlinear regression technique (optimized/constrained two different ways) was compared with the linear regression method at 26 United States Geological Survey gaging stations throughout the Upper Mississippi River basin. Sensitivity analyses were conducted at two stations, one having a concave sediment load–discharge plot and one having a convex sediment load–discharge plot, to determine each rating curve’s ability, based on varying amounts of data, to predict annual and cumulative suspended sediment yields. With a 5-year calibration dataset, a nonlinear maximized r 2 statistic curve produced the best estimates for a station with a convex sediment load–discharge relationship, while a nonlinear load-constrained curve produced the best estimates for a station with a concave sediment load–discharge relationship. At both stations (using 5-year calibration datasets), annual yield errors ranged from −54% to 112%, while 15- and 18-year cumulative yield errors ranged from about −21% to 13%.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2006.12.024</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Freshwater ; Hydrology. Hydrogeology ; linear models ; Linear regression ; mathematics and statistics ; Nonlinear regression ; prediction ; Regression analysis ; river discharge ; rivers ; sediment yield ; Sediment-rating curve ; stream flow ; Suspended sediment ; Upper Mississippi River basin ; water erosion ; watersheds</subject><ispartof>Journal of hydrology (Amsterdam), 2007-04, Vol.336 (3), p.250-268</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-a23ebeee637cbe242a20983c19584e874cbae204ac68825f8b7ec4903dd2768d3</citedby><cites>FETCH-LOGICAL-a417t-a23ebeee637cbe242a20983c19584e874cbae204ac68825f8b7ec4903dd2768d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2006.12.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18626030$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crowder, D.W.</creatorcontrib><creatorcontrib>Demissie, M.</creatorcontrib><creatorcontrib>Markus, M.</creatorcontrib><title>The accuracy of sediment loads when log-transformation produces nonlinear sediment load–discharge relationships</title><title>Journal of hydrology (Amsterdam)</title><description>Most sediment loads are estimated from sediment-rating curves created by performing a linear least-square regression on log-transformed sediment load–discharge data. When log-transformed sediment load–discharge data plots result in concave or convex curves, such regressions under- or overestimate sediment loads. Conflicting results exist regarding the accuracy/utility of using nonlinear regression to estimate loads. A nonlinear regression technique (optimized/constrained two different ways) was compared with the linear regression method at 26 United States Geological Survey gaging stations throughout the Upper Mississippi River basin. Sensitivity analyses were conducted at two stations, one having a concave sediment load–discharge plot and one having a convex sediment load–discharge plot, to determine each rating curve’s ability, based on varying amounts of data, to predict annual and cumulative suspended sediment yields. With a 5-year calibration dataset, a nonlinear maximized r 2 statistic curve produced the best estimates for a station with a convex sediment load–discharge relationship, while a nonlinear load-constrained curve produced the best estimates for a station with a concave sediment load–discharge relationship. At both stations (using 5-year calibration datasets), annual yield errors ranged from −54% to 112%, while 15- and 18-year cumulative yield errors ranged from about −21% to 13%.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>Hydrology. Hydrogeology</subject><subject>linear models</subject><subject>Linear regression</subject><subject>mathematics and statistics</subject><subject>Nonlinear regression</subject><subject>prediction</subject><subject>Regression analysis</subject><subject>river discharge</subject><subject>rivers</subject><subject>sediment yield</subject><subject>Sediment-rating curve</subject><subject>stream flow</subject><subject>Suspended sediment</subject><subject>Upper Mississippi River basin</subject><subject>water erosion</subject><subject>watersheds</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMtuEzEUhi0EEqH0ESpmA7sZji-xZ1YIVdykSixo19aJfSbjaDJO7Qkou75D35AnwU0iIVacjc_i-49_fYxdcWg4cP1-02yGg09xbASAbrhoQKhnbMFb09XCgHnOFgBC1Fx36iV7lfMGykipFuz-dqAKndsndIcq9lUmH7Y0zdUY0efq10BTWdf1nHDKfUxbnEOcql2Kfu8oV1OcxjARpn-Tvx8efchuwLSmKtF4TOUh7PJr9qLHMdPl-b1gd58_3V5_rW--f_l2_fGmRsXNXKOQtCIiLY1bkVACBXStdLxbtopao9wKSYBCp9tWLPt2ZcipDqT3wujWywv27nS3VL3fU57tthSiccSJ4j7bkgVlhCrg8gS6FHNO1NtdCltMB8vBPgm2G3sWbJ8EWy4sHHNvzx9gdjj2RZAL-W-41UKDhMK9OXE9RovrVJi7HwK4BDCaL4-XPpwIKj5-Bko2u0CTK0ITudn6GP7T5Q_IJ6El</recordid><startdate>20070407</startdate><enddate>20070407</enddate><creator>Crowder, D.W.</creator><creator>Demissie, M.</creator><creator>Markus, M.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20070407</creationdate><title>The accuracy of sediment loads when log-transformation produces nonlinear sediment load–discharge relationships</title><author>Crowder, D.W. ; Demissie, M. ; Markus, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-a23ebeee637cbe242a20983c19584e874cbae204ac68825f8b7ec4903dd2768d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>Hydrology. Hydrogeology</topic><topic>linear models</topic><topic>Linear regression</topic><topic>mathematics and statistics</topic><topic>Nonlinear regression</topic><topic>prediction</topic><topic>Regression analysis</topic><topic>river discharge</topic><topic>rivers</topic><topic>sediment yield</topic><topic>Sediment-rating curve</topic><topic>stream flow</topic><topic>Suspended sediment</topic><topic>Upper Mississippi River basin</topic><topic>water erosion</topic><topic>watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crowder, D.W.</creatorcontrib><creatorcontrib>Demissie, M.</creatorcontrib><creatorcontrib>Markus, M.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crowder, D.W.</au><au>Demissie, M.</au><au>Markus, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The accuracy of sediment loads when log-transformation produces nonlinear sediment load–discharge relationships</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2007-04-07</date><risdate>2007</risdate><volume>336</volume><issue>3</issue><spage>250</spage><epage>268</epage><pages>250-268</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>Most sediment loads are estimated from sediment-rating curves created by performing a linear least-square regression on log-transformed sediment load–discharge data. When log-transformed sediment load–discharge data plots result in concave or convex curves, such regressions under- or overestimate sediment loads. Conflicting results exist regarding the accuracy/utility of using nonlinear regression to estimate loads. A nonlinear regression technique (optimized/constrained two different ways) was compared with the linear regression method at 26 United States Geological Survey gaging stations throughout the Upper Mississippi River basin. Sensitivity analyses were conducted at two stations, one having a concave sediment load–discharge plot and one having a convex sediment load–discharge plot, to determine each rating curve’s ability, based on varying amounts of data, to predict annual and cumulative suspended sediment yields. With a 5-year calibration dataset, a nonlinear maximized r 2 statistic curve produced the best estimates for a station with a convex sediment load–discharge relationship, while a nonlinear load-constrained curve produced the best estimates for a station with a concave sediment load–discharge relationship. At both stations (using 5-year calibration datasets), annual yield errors ranged from −54% to 112%, while 15- and 18-year cumulative yield errors ranged from about −21% to 13%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2006.12.024</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2007-04, Vol.336 (3), p.250-268
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_20404724
source Access via ScienceDirect (Elsevier)
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Freshwater
Hydrology. Hydrogeology
linear models
Linear regression
mathematics and statistics
Nonlinear regression
prediction
Regression analysis
river discharge
rivers
sediment yield
Sediment-rating curve
stream flow
Suspended sediment
Upper Mississippi River basin
water erosion
watersheds
title The accuracy of sediment loads when log-transformation produces nonlinear sediment load–discharge relationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T20%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20accuracy%20of%20sediment%20loads%20when%20log-transformation%20produces%20nonlinear%20sediment%20load%E2%80%93discharge%20relationships&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Crowder,%20D.W.&rft.date=2007-04-07&rft.volume=336&rft.issue=3&rft.spage=250&rft.epage=268&rft.pages=250-268&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2006.12.024&rft_dat=%3Cproquest_cross%3E20404724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20404724&rft_id=info:pmid/&rft_els_id=S002216940600672X&rfr_iscdi=true