Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast

In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2007-12, Vol.282 (49), p.36010-36023
Hauptverfasser: Odat, Osama, Matta, Samer, Khalil, Hadi, Kampranis, Sotirios C., Pfau, Raymond, Tsichlis, Philip N., Makris, Antonios M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36023
container_issue 49
container_start_page 36010
container_title The Journal of biological chemistry
container_volume 282
creator Odat, Osama
Matta, Samer
Khalil, Hadi
Kampranis, Sotirios C.
Pfau, Raymond
Tsichlis, Philip N.
Makris, Antonios M.
description In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H2O2-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Δoye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H2O2-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H2O2-induced PCD in wild type cells, but accelerate PCD in Δoye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Δoye2 oye3) is highly resistant to H2O2-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H2O2-induced cell death: in Δoye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.
doi_str_mv 10.1074/jbc.M704058200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20399017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820621378</els_id><sourcerecordid>20399017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-52c499883c537e309759df6302fd38b243c28be9e23fbcc9a8f6a8d86ef8f9283</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhyhF8QJzI4o982Ee0tCxSl0WUSvRkOfYk6yqJi510WX4AvxuXrNQTvlgaPfN65jFCLylZUlLl729qs9xUJCeFYIQ8QgtKBM94QX88RgtCGM0kK8QJehbjDUknl_QpOqGVkJUs8gX6s-0svoau83t8Nvw-9BDf4bVrd90Br33vO9_6KeLzzRe8_eWsD2AnM-oIEe_duMMbb6dOj25o8Tffpaob_oGpdAf4cgwQI9aDxV-Db4Pue7B4lZ7DH0Gn9kRfg47jc_Sk0V2EF8f7FF2dn31frbOL7afPqw8XmcnLcswKZnIpheCm4BVwIqtC2qbkhDWWi5rl3DBRgwTGm9oYqUVTamFFCY1oJBP8FL2dc2-D_zlBHFXvoknz6AHSnooRLiWhVQKXM2iCjzFAo26D63U4KErUvXmVzKsH86nh1TF5qtOSD_hRdQLezMAu2d27AKp23uygV0wwlUvFS0Lvc17PWKO90m1wUV1dMkI5SR_LK1YmQswEJFF3DoKKxsFgwKZQMyrr3f-G_AvHkafr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20399017</pqid></control><display><type>article</type><title>Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Odat, Osama ; Matta, Samer ; Khalil, Hadi ; Kampranis, Sotirios C. ; Pfau, Raymond ; Tsichlis, Philip N. ; Makris, Antonios M.</creator><creatorcontrib>Odat, Osama ; Matta, Samer ; Khalil, Hadi ; Kampranis, Sotirios C. ; Pfau, Raymond ; Tsichlis, Philip N. ; Makris, Antonios M.</creatorcontrib><description>In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H2O2-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Δoye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H2O2-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H2O2-induced PCD in wild type cells, but accelerate PCD in Δoye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Δoye2 oye3) is highly resistant to H2O2-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H2O2-induced cell death: in Δoye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M704058200</identifier><identifier>PMID: 17897954</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - genetics ; Actins - metabolism ; Amino Acid Sequence - genetics ; Amino Acid Substitution ; Apoptosis - drug effects ; Apoptosis - physiology ; bcl-2-Associated X Protein - genetics ; bcl-2-Associated X Protein - metabolism ; Cytoskeleton - genetics ; Cytoskeleton - metabolism ; FMN Reductase - genetics ; FMN Reductase - metabolism ; Glutathione - genetics ; Glutathione - metabolism ; Hydrogen Peroxide - pharmacology ; Mutation, Missense ; Oxidants - pharmacology ; Oxidation-Reduction ; Oxidative Stress - drug effects ; Oxidative Stress - physiology ; Oxygen Consumption - drug effects ; Oxygen Consumption - physiology ; Reactive Oxygen Species - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Deletion</subject><ispartof>The Journal of biological chemistry, 2007-12, Vol.282 (49), p.36010-36023</ispartof><rights>2007 © 2007 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-52c499883c537e309759df6302fd38b243c28be9e23fbcc9a8f6a8d86ef8f9283</citedby><cites>FETCH-LOGICAL-c466t-52c499883c537e309759df6302fd38b243c28be9e23fbcc9a8f6a8d86ef8f9283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17897954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odat, Osama</creatorcontrib><creatorcontrib>Matta, Samer</creatorcontrib><creatorcontrib>Khalil, Hadi</creatorcontrib><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><creatorcontrib>Pfau, Raymond</creatorcontrib><creatorcontrib>Tsichlis, Philip N.</creatorcontrib><creatorcontrib>Makris, Antonios M.</creatorcontrib><title>Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H2O2-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Δoye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H2O2-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H2O2-induced PCD in wild type cells, but accelerate PCD in Δoye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Δoye2 oye3) is highly resistant to H2O2-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H2O2-induced cell death: in Δoye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.</description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Amino Acid Sequence - genetics</subject><subject>Amino Acid Substitution</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - physiology</subject><subject>bcl-2-Associated X Protein - genetics</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Cytoskeleton - genetics</subject><subject>Cytoskeleton - metabolism</subject><subject>FMN Reductase - genetics</subject><subject>FMN Reductase - metabolism</subject><subject>Glutathione - genetics</subject><subject>Glutathione - metabolism</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Mutation, Missense</subject><subject>Oxidants - pharmacology</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - physiology</subject><subject>Oxygen Consumption - drug effects</subject><subject>Oxygen Consumption - physiology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Deletion</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EokvhyhF8QJzI4o982Ee0tCxSl0WUSvRkOfYk6yqJi510WX4AvxuXrNQTvlgaPfN65jFCLylZUlLl729qs9xUJCeFYIQ8QgtKBM94QX88RgtCGM0kK8QJehbjDUknl_QpOqGVkJUs8gX6s-0svoau83t8Nvw-9BDf4bVrd90Br33vO9_6KeLzzRe8_eWsD2AnM-oIEe_duMMbb6dOj25o8Tffpaob_oGpdAf4cgwQI9aDxV-Db4Pue7B4lZ7DH0Gn9kRfg47jc_Sk0V2EF8f7FF2dn31frbOL7afPqw8XmcnLcswKZnIpheCm4BVwIqtC2qbkhDWWi5rl3DBRgwTGm9oYqUVTamFFCY1oJBP8FL2dc2-D_zlBHFXvoknz6AHSnooRLiWhVQKXM2iCjzFAo26D63U4KErUvXmVzKsH86nh1TF5qtOSD_hRdQLezMAu2d27AKp23uygV0wwlUvFS0Lvc17PWKO90m1wUV1dMkI5SR_LK1YmQswEJFF3DoKKxsFgwKZQMyrr3f-G_AvHkafr</recordid><startdate>20071207</startdate><enddate>20071207</enddate><creator>Odat, Osama</creator><creator>Matta, Samer</creator><creator>Khalil, Hadi</creator><creator>Kampranis, Sotirios C.</creator><creator>Pfau, Raymond</creator><creator>Tsichlis, Philip N.</creator><creator>Makris, Antonios M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>20071207</creationdate><title>Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast</title><author>Odat, Osama ; Matta, Samer ; Khalil, Hadi ; Kampranis, Sotirios C. ; Pfau, Raymond ; Tsichlis, Philip N. ; Makris, Antonios M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-52c499883c537e309759df6302fd38b243c28be9e23fbcc9a8f6a8d86ef8f9283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Amino Acid Sequence - genetics</topic><topic>Amino Acid Substitution</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - physiology</topic><topic>bcl-2-Associated X Protein - genetics</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Cytoskeleton - genetics</topic><topic>Cytoskeleton - metabolism</topic><topic>FMN Reductase - genetics</topic><topic>FMN Reductase - metabolism</topic><topic>Glutathione - genetics</topic><topic>Glutathione - metabolism</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Mutation, Missense</topic><topic>Oxidants - pharmacology</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - physiology</topic><topic>Oxygen Consumption - drug effects</topic><topic>Oxygen Consumption - physiology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Deletion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odat, Osama</creatorcontrib><creatorcontrib>Matta, Samer</creatorcontrib><creatorcontrib>Khalil, Hadi</creatorcontrib><creatorcontrib>Kampranis, Sotirios C.</creatorcontrib><creatorcontrib>Pfau, Raymond</creatorcontrib><creatorcontrib>Tsichlis, Philip N.</creatorcontrib><creatorcontrib>Makris, Antonios M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odat, Osama</au><au>Matta, Samer</au><au>Khalil, Hadi</au><au>Kampranis, Sotirios C.</au><au>Pfau, Raymond</au><au>Tsichlis, Philip N.</au><au>Makris, Antonios M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2007-12-07</date><risdate>2007</risdate><volume>282</volume><issue>49</issue><spage>36010</spage><epage>36023</epage><pages>36010-36023</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H2O2-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Δoye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H2O2-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H2O2-induced PCD in wild type cells, but accelerate PCD in Δoye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Δoye2 oye3) is highly resistant to H2O2-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H2O2-induced cell death: in Δoye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17897954</pmid><doi>10.1074/jbc.M704058200</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2007-12, Vol.282 (49), p.36010-36023
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_20399017
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Actins - genetics
Actins - metabolism
Amino Acid Sequence - genetics
Amino Acid Substitution
Apoptosis - drug effects
Apoptosis - physiology
bcl-2-Associated X Protein - genetics
bcl-2-Associated X Protein - metabolism
Cytoskeleton - genetics
Cytoskeleton - metabolism
FMN Reductase - genetics
FMN Reductase - metabolism
Glutathione - genetics
Glutathione - metabolism
Hydrogen Peroxide - pharmacology
Mutation, Missense
Oxidants - pharmacology
Oxidation-Reduction
Oxidative Stress - drug effects
Oxidative Stress - physiology
Oxygen Consumption - drug effects
Oxygen Consumption - physiology
Reactive Oxygen Species - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Deletion
title Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Old%20Yellow%20Enzymes,%20Highly%20Homologous%20FMN%20Oxidoreductases%20with%20Modulating%20Roles%20in%20Oxidative%20Stress%20and%20Programmed%20Cell%20Death%20in%20Yeast&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Odat,%20Osama&rft.date=2007-12-07&rft.volume=282&rft.issue=49&rft.spage=36010&rft.epage=36023&rft.pages=36010-36023&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M704058200&rft_dat=%3Cproquest_cross%3E20399017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20399017&rft_id=info:pmid/17897954&rft_els_id=S0021925820621378&rfr_iscdi=true