Compositional data analysis in epidemiology

Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2018-06, Vol.27 (6), p.1878-1891
Hauptverfasser: Mert, Mehmet C, Filzmoser, Peter, Endel, Gottfried, Wilbacher, Ingrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1891
container_issue 6
container_start_page 1878
container_title Statistical methods in medical research
container_volume 27
creator Mert, Mehmet C
Filzmoser, Peter
Endel, Gottfried
Wilbacher, Ingrid
description Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical analyses, using illustrative data sets from Austrian districts. Not only the results of the analyses can differ, but in particular the interpretation differs. It is demonstrated that the compositional data analysis approach leads to new and interesting insights.
doi_str_mv 10.1177/0962280216671536
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2039871315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280216671536</sage_id><sourcerecordid>2039871315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-d7052cb5f0e1e932a4b082ccc7d66200008b772c32634d7b8e2ed87e2fdb56183</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMo7rp69yQFL4JUJ0mTaY6y-AULXvRc0iRdsrSb2rSH_e9t2VVB8DQD85s3bx4hlxTuKEW8ByUZy4FRKZEKLo_InGaIKXCeHZP5NE6n-YycxbgBAIRMnZIZUyhRKDont8vQtCH63oetrhOre53osdtFHxO_TVzrrWt8qMN6d05OKl1Hd3GoC_Lx9Pi-fElXb8-vy4dVargUfWoRBDOlqMBRpzjTWQk5M8aglZKNJiAvEZnhTPLMYpk75myOjlW2FJLmfEFu9rptFz4HF_ui8dG4utZbF4ZYMOAqR8rHjxfk-g-6CUM3-p-oDDKhUOBIwZ4yXYixc1XRdr7R3a6gUExBFn-DHFeuDsJD2Tj7s_Cd3AikeyDqtfu9-q_gF3U1eCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040459757</pqid></control><display><type>article</type><title>Compositional data analysis in epidemiology</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE Complete</source><creator>Mert, Mehmet C ; Filzmoser, Peter ; Endel, Gottfried ; Wilbacher, Ingrid</creator><creatorcontrib>Mert, Mehmet C ; Filzmoser, Peter ; Endel, Gottfried ; Wilbacher, Ingrid</creatorcontrib><description>Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical analyses, using illustrative data sets from Austrian districts. Not only the results of the analyses can differ, but in particular the interpretation differs. It is demonstrated that the compositional data analysis approach leads to new and interesting insights.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280216671536</identifier><identifier>PMID: 29767591</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Analysis ; Data analysis ; Epidemiology ; Statistical analysis</subject><ispartof>Statistical methods in medical research, 2018-06, Vol.27 (6), p.1878-1891</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-d7052cb5f0e1e932a4b082ccc7d66200008b772c32634d7b8e2ed87e2fdb56183</citedby><cites>FETCH-LOGICAL-c365t-d7052cb5f0e1e932a4b082ccc7d66200008b772c32634d7b8e2ed87e2fdb56183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280216671536$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280216671536$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,30976,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29767591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mert, Mehmet C</creatorcontrib><creatorcontrib>Filzmoser, Peter</creatorcontrib><creatorcontrib>Endel, Gottfried</creatorcontrib><creatorcontrib>Wilbacher, Ingrid</creatorcontrib><title>Compositional data analysis in epidemiology</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical analyses, using illustrative data sets from Austrian districts. Not only the results of the analyses can differ, but in particular the interpretation differs. It is demonstrated that the compositional data analysis approach leads to new and interesting insights.</description><subject>Analysis</subject><subject>Data analysis</subject><subject>Epidemiology</subject><subject>Statistical analysis</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kM1LxDAQxYMo7rp69yQFL4JUJ0mTaY6y-AULXvRc0iRdsrSb2rSH_e9t2VVB8DQD85s3bx4hlxTuKEW8ByUZy4FRKZEKLo_InGaIKXCeHZP5NE6n-YycxbgBAIRMnZIZUyhRKDont8vQtCH63oetrhOre53osdtFHxO_TVzrrWt8qMN6d05OKl1Hd3GoC_Lx9Pi-fElXb8-vy4dVargUfWoRBDOlqMBRpzjTWQk5M8aglZKNJiAvEZnhTPLMYpk75myOjlW2FJLmfEFu9rptFz4HF_ui8dG4utZbF4ZYMOAqR8rHjxfk-g-6CUM3-p-oDDKhUOBIwZ4yXYixc1XRdr7R3a6gUExBFn-DHFeuDsJD2Tj7s_Cd3AikeyDqtfu9-q_gF3U1eCE</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Mert, Mehmet C</creator><creator>Filzmoser, Peter</creator><creator>Endel, Gottfried</creator><creator>Wilbacher, Ingrid</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201806</creationdate><title>Compositional data analysis in epidemiology</title><author>Mert, Mehmet C ; Filzmoser, Peter ; Endel, Gottfried ; Wilbacher, Ingrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-d7052cb5f0e1e932a4b082ccc7d66200008b772c32634d7b8e2ed87e2fdb56183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Data analysis</topic><topic>Epidemiology</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mert, Mehmet C</creatorcontrib><creatorcontrib>Filzmoser, Peter</creatorcontrib><creatorcontrib>Endel, Gottfried</creatorcontrib><creatorcontrib>Wilbacher, Ingrid</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mert, Mehmet C</au><au>Filzmoser, Peter</au><au>Endel, Gottfried</au><au>Wilbacher, Ingrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional data analysis in epidemiology</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2018-06</date><risdate>2018</risdate><volume>27</volume><issue>6</issue><spage>1878</spage><epage>1891</epage><pages>1878-1891</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical analyses, using illustrative data sets from Austrian districts. Not only the results of the analyses can differ, but in particular the interpretation differs. It is demonstrated that the compositional data analysis approach leads to new and interesting insights.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>29767591</pmid><doi>10.1177/0962280216671536</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2018-06, Vol.27 (6), p.1878-1891
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_2039871315
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete
subjects Analysis
Data analysis
Epidemiology
Statistical analysis
title Compositional data analysis in epidemiology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20data%20analysis%20in%20epidemiology&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Mert,%20Mehmet%20C&rft.date=2018-06&rft.volume=27&rft.issue=6&rft.spage=1878&rft.epage=1891&rft.pages=1878-1891&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280216671536&rft_dat=%3Cproquest_cross%3E2039871315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040459757&rft_id=info:pmid/29767591&rft_sage_id=10.1177_0962280216671536&rfr_iscdi=true