Compositional data analysis in epidemiology
Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical anal...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2018-06, Vol.27 (6), p.1878-1891 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1891 |
---|---|
container_issue | 6 |
container_start_page | 1878 |
container_title | Statistical methods in medical research |
container_volume | 27 |
creator | Mert, Mehmet C Filzmoser, Peter Endel, Gottfried Wilbacher, Ingrid |
description | Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical analyses, using illustrative data sets from Austrian districts. Not only the results of the analyses can differ, but in particular the interpretation differs. It is demonstrated that the compositional data analysis approach leads to new and interesting insights. |
doi_str_mv | 10.1177/0962280216671536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2039871315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280216671536</sage_id><sourcerecordid>2039871315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-d7052cb5f0e1e932a4b082ccc7d66200008b772c32634d7b8e2ed87e2fdb56183</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMo7rp69yQFL4JUJ0mTaY6y-AULXvRc0iRdsrSb2rSH_e9t2VVB8DQD85s3bx4hlxTuKEW8ByUZy4FRKZEKLo_InGaIKXCeHZP5NE6n-YycxbgBAIRMnZIZUyhRKDont8vQtCH63oetrhOre53osdtFHxO_TVzrrWt8qMN6d05OKl1Hd3GoC_Lx9Pi-fElXb8-vy4dVargUfWoRBDOlqMBRpzjTWQk5M8aglZKNJiAvEZnhTPLMYpk75myOjlW2FJLmfEFu9rptFz4HF_ui8dG4utZbF4ZYMOAqR8rHjxfk-g-6CUM3-p-oDDKhUOBIwZ4yXYixc1XRdr7R3a6gUExBFn-DHFeuDsJD2Tj7s_Cd3AikeyDqtfu9-q_gF3U1eCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040459757</pqid></control><display><type>article</type><title>Compositional data analysis in epidemiology</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE Complete</source><creator>Mert, Mehmet C ; Filzmoser, Peter ; Endel, Gottfried ; Wilbacher, Ingrid</creator><creatorcontrib>Mert, Mehmet C ; Filzmoser, Peter ; Endel, Gottfried ; Wilbacher, Ingrid</creatorcontrib><description>Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical analyses, using illustrative data sets from Austrian districts. Not only the results of the analyses can differ, but in particular the interpretation differs. It is demonstrated that the compositional data analysis approach leads to new and interesting insights.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280216671536</identifier><identifier>PMID: 29767591</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Analysis ; Data analysis ; Epidemiology ; Statistical analysis</subject><ispartof>Statistical methods in medical research, 2018-06, Vol.27 (6), p.1878-1891</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-d7052cb5f0e1e932a4b082ccc7d66200008b772c32634d7b8e2ed87e2fdb56183</citedby><cites>FETCH-LOGICAL-c365t-d7052cb5f0e1e932a4b082ccc7d66200008b772c32634d7b8e2ed87e2fdb56183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280216671536$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280216671536$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,30976,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29767591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mert, Mehmet C</creatorcontrib><creatorcontrib>Filzmoser, Peter</creatorcontrib><creatorcontrib>Endel, Gottfried</creatorcontrib><creatorcontrib>Wilbacher, Ingrid</creatorcontrib><title>Compositional data analysis in epidemiology</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical analyses, using illustrative data sets from Austrian districts. Not only the results of the analyses can differ, but in particular the interpretation differs. It is demonstrated that the compositional data analysis approach leads to new and interesting insights.</description><subject>Analysis</subject><subject>Data analysis</subject><subject>Epidemiology</subject><subject>Statistical analysis</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kM1LxDAQxYMo7rp69yQFL4JUJ0mTaY6y-AULXvRc0iRdsrSb2rSH_e9t2VVB8DQD85s3bx4hlxTuKEW8ByUZy4FRKZEKLo_InGaIKXCeHZP5NE6n-YycxbgBAIRMnZIZUyhRKDont8vQtCH63oetrhOre53osdtFHxO_TVzrrWt8qMN6d05OKl1Hd3GoC_Lx9Pi-fElXb8-vy4dVargUfWoRBDOlqMBRpzjTWQk5M8aglZKNJiAvEZnhTPLMYpk75myOjlW2FJLmfEFu9rptFz4HF_ui8dG4utZbF4ZYMOAqR8rHjxfk-g-6CUM3-p-oDDKhUOBIwZ4yXYixc1XRdr7R3a6gUExBFn-DHFeuDsJD2Tj7s_Cd3AikeyDqtfu9-q_gF3U1eCE</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Mert, Mehmet C</creator><creator>Filzmoser, Peter</creator><creator>Endel, Gottfried</creator><creator>Wilbacher, Ingrid</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201806</creationdate><title>Compositional data analysis in epidemiology</title><author>Mert, Mehmet C ; Filzmoser, Peter ; Endel, Gottfried ; Wilbacher, Ingrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-d7052cb5f0e1e932a4b082ccc7d66200008b772c32634d7b8e2ed87e2fdb56183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Data analysis</topic><topic>Epidemiology</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mert, Mehmet C</creatorcontrib><creatorcontrib>Filzmoser, Peter</creatorcontrib><creatorcontrib>Endel, Gottfried</creatorcontrib><creatorcontrib>Wilbacher, Ingrid</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mert, Mehmet C</au><au>Filzmoser, Peter</au><au>Endel, Gottfried</au><au>Wilbacher, Ingrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional data analysis in epidemiology</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2018-06</date><risdate>2018</risdate><volume>27</volume><issue>6</issue><spage>1878</spage><epage>1891</epage><pages>1878-1891</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Compositional data analysis refers to analyzing relative information, based on ratios between the variables in a data set. Data from epidemiology are usually treated as absolute information in an analysis. We outline the differences in both approaches for univariate and multivariate statistical analyses, using illustrative data sets from Austrian districts. Not only the results of the analyses can differ, but in particular the interpretation differs. It is demonstrated that the compositional data analysis approach leads to new and interesting insights.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>29767591</pmid><doi>10.1177/0962280216671536</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2018-06, Vol.27 (6), p.1878-1891 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_2039871315 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete |
subjects | Analysis Data analysis Epidemiology Statistical analysis |
title | Compositional data analysis in epidemiology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20data%20analysis%20in%20epidemiology&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Mert,%20Mehmet%20C&rft.date=2018-06&rft.volume=27&rft.issue=6&rft.spage=1878&rft.epage=1891&rft.pages=1878-1891&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280216671536&rft_dat=%3Cproquest_cross%3E2039871315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040459757&rft_id=info:pmid/29767591&rft_sage_id=10.1177_0962280216671536&rfr_iscdi=true |