Predicting lysine‐malonylation sites of proteins using sequence and predicted structural features

Malonylation is a recently discovered post‐translational modification (PTM) in which a malonyl group attaches to a lysine (K) amino acid residue of a protein. In this work, a novel machine learning model, SPRINT‐Mal, is developed to predict malonylation sites by employing sequence and predicted stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2018-08, Vol.39 (22), p.1757-1763
Hauptverfasser: Taherzadeh, Ghazaleh, Yang, Yuedong, Xu, Haodong, Xue, Yu, Liew, Alan Wee‐Chung, Zhou, Yaoqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1763
container_issue 22
container_start_page 1757
container_title Journal of computational chemistry
container_volume 39
creator Taherzadeh, Ghazaleh
Yang, Yuedong
Xu, Haodong
Xue, Yu
Liew, Alan Wee‐Chung
Zhou, Yaoqi
description Malonylation is a recently discovered post‐translational modification (PTM) in which a malonyl group attaches to a lysine (K) amino acid residue of a protein. In this work, a novel machine learning model, SPRINT‐Mal, is developed to predict malonylation sites by employing sequence and predicted structural features. Evolutionary information and physicochemical properties are found to be the two most discriminative features whereas a structural feature called half‐sphere exposure provides additional improvement to the prediction performance. SPRINT‐Mal trained on mouse data yields robust performance for 10‐fold cross validation and independent test set with Area Under the Curve (AUC) values of 0.74 and 0.76 and Matthews’ Correlation Coefficient (MCC) of 0.213 and 0.20, respectively. Moreover, SPRINT‐Mal achieved comparable performance when testing on H. sapiens proteins without species‐specific training but not in bacterium S. erythraea. This suggests similar underlying physicochemical mechanisms between mouse and human but not between mouse and bacterium. SPRINT‐Mal is freely available as an online server at: http://sparks-lab.org/server/SPRINT-Mal/. © 2018 Wiley Periodicals, Inc. Malonylation is a recently discovered post‐translational modification in which a malonyl group attaches to a lysine amino acid of a protein. Identifying malonylation sites in a protein sequence is the first step toward discovering its biological function. Thus, making “educated” computational prediction prior to experimental studies is necessary. All existing prediction tools infer malonylation sites from sequence‐derived features of proteins. Here, we developed a method employing sequence and predicted structural features of proteins which outperforms existing methods significantly.
doi_str_mv 10.1002/jcc.25353
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2039295715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039295715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4193-355ece112260cd0f026ddf9944c1fae725d3167d990898c4072a1c8c5f762d1d3</originalsourceid><addsrcrecordid>eNp10E9LwzAYBvAgipvTg19ACl700C1Jm7Q5SvEvAz0oeCsxeSsZXTqTFunNj-Bn9JOYrdOD4Ckv5MfDw4PQMcFTgjGdLZSaUpawZAeNCRY8Fnn2vIvGmAga55yRETrwfoExThhP99GIiowTRvEYqQcH2qjW2Neo7r2x8PXxuZR1Y_tatqaxkTct-KipopVrWjDWR51faw9vHVgFkbQ6_G1SQEe-dZ1qOyfrqAIZDvCHaK-StYej7TtBT1eXj8VNPL-_vi0u5rFKiUjihDFQQAilHCuNK0y51pUQaapIJSGjTCeEZ1oInItcpTijkqhcsSrjVBOdTNDZkBuahm6-LZfGK6hraaHpfElxIqhgGWGBnv6hi6ZzNrQLStCUiyylQZ0PSrnGewdVuXJmKV1fElyuly_D8uVm-WBPtondyxL0r_yZOoDZAN5NDf3_SeVdUQyR3wGcjq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092469742</pqid></control><display><type>article</type><title>Predicting lysine‐malonylation sites of proteins using sequence and predicted structural features</title><source>Wiley Online Library All Journals</source><creator>Taherzadeh, Ghazaleh ; Yang, Yuedong ; Xu, Haodong ; Xue, Yu ; Liew, Alan Wee‐Chung ; Zhou, Yaoqi</creator><creatorcontrib>Taherzadeh, Ghazaleh ; Yang, Yuedong ; Xu, Haodong ; Xue, Yu ; Liew, Alan Wee‐Chung ; Zhou, Yaoqi</creatorcontrib><description>Malonylation is a recently discovered post‐translational modification (PTM) in which a malonyl group attaches to a lysine (K) amino acid residue of a protein. In this work, a novel machine learning model, SPRINT‐Mal, is developed to predict malonylation sites by employing sequence and predicted structural features. Evolutionary information and physicochemical properties are found to be the two most discriminative features whereas a structural feature called half‐sphere exposure provides additional improvement to the prediction performance. SPRINT‐Mal trained on mouse data yields robust performance for 10‐fold cross validation and independent test set with Area Under the Curve (AUC) values of 0.74 and 0.76 and Matthews’ Correlation Coefficient (MCC) of 0.213 and 0.20, respectively. Moreover, SPRINT‐Mal achieved comparable performance when testing on H. sapiens proteins without species‐specific training but not in bacterium S. erythraea. This suggests similar underlying physicochemical mechanisms between mouse and human but not between mouse and bacterium. SPRINT‐Mal is freely available as an online server at: http://sparks-lab.org/server/SPRINT-Mal/. © 2018 Wiley Periodicals, Inc. Malonylation is a recently discovered post‐translational modification in which a malonyl group attaches to a lysine amino acid of a protein. Identifying malonylation sites in a protein sequence is the first step toward discovering its biological function. Thus, making “educated” computational prediction prior to experimental studies is necessary. All existing prediction tools infer malonylation sites from sequence‐derived features of proteins. Here, we developed a method employing sequence and predicted structural features of proteins which outperforms existing methods significantly.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.25353</identifier><identifier>PMID: 29761520</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; Correlation coefficient ; Correlation coefficients ; Lysine ; lysine‐malonylation sites prediction ; Machine learning ; Physicochemical properties ; post translational modification ; Predictions ; Proteins ; support vector machines</subject><ispartof>Journal of computational chemistry, 2018-08, Vol.39 (22), p.1757-1763</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4193-355ece112260cd0f026ddf9944c1fae725d3167d990898c4072a1c8c5f762d1d3</citedby><cites>FETCH-LOGICAL-c4193-355ece112260cd0f026ddf9944c1fae725d3167d990898c4072a1c8c5f762d1d3</cites><orcidid>0000-0002-9958-5699 ; 0000-0003-3998-3967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.25353$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.25353$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29761520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taherzadeh, Ghazaleh</creatorcontrib><creatorcontrib>Yang, Yuedong</creatorcontrib><creatorcontrib>Xu, Haodong</creatorcontrib><creatorcontrib>Xue, Yu</creatorcontrib><creatorcontrib>Liew, Alan Wee‐Chung</creatorcontrib><creatorcontrib>Zhou, Yaoqi</creatorcontrib><title>Predicting lysine‐malonylation sites of proteins using sequence and predicted structural features</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Malonylation is a recently discovered post‐translational modification (PTM) in which a malonyl group attaches to a lysine (K) amino acid residue of a protein. In this work, a novel machine learning model, SPRINT‐Mal, is developed to predict malonylation sites by employing sequence and predicted structural features. Evolutionary information and physicochemical properties are found to be the two most discriminative features whereas a structural feature called half‐sphere exposure provides additional improvement to the prediction performance. SPRINT‐Mal trained on mouse data yields robust performance for 10‐fold cross validation and independent test set with Area Under the Curve (AUC) values of 0.74 and 0.76 and Matthews’ Correlation Coefficient (MCC) of 0.213 and 0.20, respectively. Moreover, SPRINT‐Mal achieved comparable performance when testing on H. sapiens proteins without species‐specific training but not in bacterium S. erythraea. This suggests similar underlying physicochemical mechanisms between mouse and human but not between mouse and bacterium. SPRINT‐Mal is freely available as an online server at: http://sparks-lab.org/server/SPRINT-Mal/. © 2018 Wiley Periodicals, Inc. Malonylation is a recently discovered post‐translational modification in which a malonyl group attaches to a lysine amino acid of a protein. Identifying malonylation sites in a protein sequence is the first step toward discovering its biological function. Thus, making “educated” computational prediction prior to experimental studies is necessary. All existing prediction tools infer malonylation sites from sequence‐derived features of proteins. Here, we developed a method employing sequence and predicted structural features of proteins which outperforms existing methods significantly.</description><subject>Bacteria</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Lysine</subject><subject>lysine‐malonylation sites prediction</subject><subject>Machine learning</subject><subject>Physicochemical properties</subject><subject>post translational modification</subject><subject>Predictions</subject><subject>Proteins</subject><subject>support vector machines</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E9LwzAYBvAgipvTg19ACl700C1Jm7Q5SvEvAz0oeCsxeSsZXTqTFunNj-Bn9JOYrdOD4Ckv5MfDw4PQMcFTgjGdLZSaUpawZAeNCRY8Fnn2vIvGmAga55yRETrwfoExThhP99GIiowTRvEYqQcH2qjW2Neo7r2x8PXxuZR1Y_tatqaxkTct-KipopVrWjDWR51faw9vHVgFkbQ6_G1SQEe-dZ1qOyfrqAIZDvCHaK-StYej7TtBT1eXj8VNPL-_vi0u5rFKiUjihDFQQAilHCuNK0y51pUQaapIJSGjTCeEZ1oInItcpTijkqhcsSrjVBOdTNDZkBuahm6-LZfGK6hraaHpfElxIqhgGWGBnv6hi6ZzNrQLStCUiyylQZ0PSrnGewdVuXJmKV1fElyuly_D8uVm-WBPtondyxL0r_yZOoDZAN5NDf3_SeVdUQyR3wGcjq4</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Taherzadeh, Ghazaleh</creator><creator>Yang, Yuedong</creator><creator>Xu, Haodong</creator><creator>Xue, Yu</creator><creator>Liew, Alan Wee‐Chung</creator><creator>Zhou, Yaoqi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9958-5699</orcidid><orcidid>https://orcid.org/0000-0003-3998-3967</orcidid></search><sort><creationdate>20180815</creationdate><title>Predicting lysine‐malonylation sites of proteins using sequence and predicted structural features</title><author>Taherzadeh, Ghazaleh ; Yang, Yuedong ; Xu, Haodong ; Xue, Yu ; Liew, Alan Wee‐Chung ; Zhou, Yaoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4193-355ece112260cd0f026ddf9944c1fae725d3167d990898c4072a1c8c5f762d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacteria</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Lysine</topic><topic>lysine‐malonylation sites prediction</topic><topic>Machine learning</topic><topic>Physicochemical properties</topic><topic>post translational modification</topic><topic>Predictions</topic><topic>Proteins</topic><topic>support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taherzadeh, Ghazaleh</creatorcontrib><creatorcontrib>Yang, Yuedong</creatorcontrib><creatorcontrib>Xu, Haodong</creatorcontrib><creatorcontrib>Xue, Yu</creatorcontrib><creatorcontrib>Liew, Alan Wee‐Chung</creatorcontrib><creatorcontrib>Zhou, Yaoqi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taherzadeh, Ghazaleh</au><au>Yang, Yuedong</au><au>Xu, Haodong</au><au>Xue, Yu</au><au>Liew, Alan Wee‐Chung</au><au>Zhou, Yaoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting lysine‐malonylation sites of proteins using sequence and predicted structural features</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>39</volume><issue>22</issue><spage>1757</spage><epage>1763</epage><pages>1757-1763</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Malonylation is a recently discovered post‐translational modification (PTM) in which a malonyl group attaches to a lysine (K) amino acid residue of a protein. In this work, a novel machine learning model, SPRINT‐Mal, is developed to predict malonylation sites by employing sequence and predicted structural features. Evolutionary information and physicochemical properties are found to be the two most discriminative features whereas a structural feature called half‐sphere exposure provides additional improvement to the prediction performance. SPRINT‐Mal trained on mouse data yields robust performance for 10‐fold cross validation and independent test set with Area Under the Curve (AUC) values of 0.74 and 0.76 and Matthews’ Correlation Coefficient (MCC) of 0.213 and 0.20, respectively. Moreover, SPRINT‐Mal achieved comparable performance when testing on H. sapiens proteins without species‐specific training but not in bacterium S. erythraea. This suggests similar underlying physicochemical mechanisms between mouse and human but not between mouse and bacterium. SPRINT‐Mal is freely available as an online server at: http://sparks-lab.org/server/SPRINT-Mal/. © 2018 Wiley Periodicals, Inc. Malonylation is a recently discovered post‐translational modification in which a malonyl group attaches to a lysine amino acid of a protein. Identifying malonylation sites in a protein sequence is the first step toward discovering its biological function. Thus, making “educated” computational prediction prior to experimental studies is necessary. All existing prediction tools infer malonylation sites from sequence‐derived features of proteins. Here, we developed a method employing sequence and predicted structural features of proteins which outperforms existing methods significantly.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29761520</pmid><doi>10.1002/jcc.25353</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9958-5699</orcidid><orcidid>https://orcid.org/0000-0003-3998-3967</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2018-08, Vol.39 (22), p.1757-1763
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2039295715
source Wiley Online Library All Journals
subjects Bacteria
Correlation coefficient
Correlation coefficients
Lysine
lysine‐malonylation sites prediction
Machine learning
Physicochemical properties
post translational modification
Predictions
Proteins
support vector machines
title Predicting lysine‐malonylation sites of proteins using sequence and predicted structural features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20lysine%E2%80%90malonylation%20sites%20of%20proteins%20using%20sequence%20and%20predicted%20structural%20features&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Taherzadeh,%20Ghazaleh&rft.date=2018-08-15&rft.volume=39&rft.issue=22&rft.spage=1757&rft.epage=1763&rft.pages=1757-1763&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.25353&rft_dat=%3Cproquest_cross%3E2039295715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092469742&rft_id=info:pmid/29761520&rfr_iscdi=true