Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width
The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects domi...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2018-04, Vol.97 (4-1), p.043106-043106, Article 043106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 043106 |
---|---|
container_issue | 4-1 |
container_start_page | 043106 |
container_title | Physical review. E |
container_volume | 97 |
creator | Piriz, S A Piriz, A R Tahir, N A |
description | The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number A_{T}=1 and for sufficiently small values of A_{T}. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium. |
doi_str_mv | 10.1103/PhysRevE.97.043106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2039289732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039289732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-54cf41308d0bd3ad3cab4348e58a4f937b7fc20176e53c80b9f365df99de2a3e3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRbKn9Ah4kRy-psztJNnuUUv9AUSnVa9hkZ-1KmtTs1tJvb6S1MDCP4b3H8GPsmsOEc8C7t9XeL-hnNlFyAglyyM7YUCQSYoAUz086SQds7P0XAPAMlOTikg2EkmmeoRqyj7lrSHfRQu9rcp-reNmLtotc44MuXe3CvteR7qeqqKZOBzLRC-1C27j-auutM9HOhVVkXeMC9dqE1RW7sLr2ND7uEXt_mC2nT_H89fF5ej-PK0xFiNOksglHyA2UBrXBSpcJJjmluU6sQllKWwngMqMUqxxKZTFLjVXKkNBIOGK3h95N135vyYdi7Xz_Z60bare-EIBK5Eqi6K3iYK261vuObLHp3Fp3-4JD8Ye0-EdaKFkckPahm2P_tlyTOUX-AeIvaiN0XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039289732</pqid></control><display><type>article</type><title>Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width</title><source>American Physical Society Journals</source><creator>Piriz, S A ; Piriz, A R ; Tahir, N A</creator><creatorcontrib>Piriz, S A ; Piriz, A R ; Tahir, N A</creatorcontrib><description>The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number A_{T}=1 and for sufficiently small values of A_{T}. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.97.043106</identifier><identifier>PMID: 29758639</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2018-04, Vol.97 (4-1), p.043106-043106, Article 043106</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-54cf41308d0bd3ad3cab4348e58a4f937b7fc20176e53c80b9f365df99de2a3e3</citedby><cites>FETCH-LOGICAL-c352t-54cf41308d0bd3ad3cab4348e58a4f937b7fc20176e53c80b9f365df99de2a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29758639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piriz, S A</creatorcontrib><creatorcontrib>Piriz, A R</creatorcontrib><creatorcontrib>Tahir, N A</creatorcontrib><title>Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number A_{T}=1 and for sufficiently small values of A_{T}. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxRdRbKn9Ah4kRy-psztJNnuUUv9AUSnVa9hkZ-1KmtTs1tJvb6S1MDCP4b3H8GPsmsOEc8C7t9XeL-hnNlFyAglyyM7YUCQSYoAUz086SQds7P0XAPAMlOTikg2EkmmeoRqyj7lrSHfRQu9rcp-reNmLtotc44MuXe3CvteR7qeqqKZOBzLRC-1C27j-auutM9HOhVVkXeMC9dqE1RW7sLr2ND7uEXt_mC2nT_H89fF5ej-PK0xFiNOksglHyA2UBrXBSpcJJjmluU6sQllKWwngMqMUqxxKZTFLjVXKkNBIOGK3h95N135vyYdi7Xz_Z60bare-EIBK5Eqi6K3iYK261vuObLHp3Fp3-4JD8Ye0-EdaKFkckPahm2P_tlyTOUX-AeIvaiN0XA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Piriz, S A</creator><creator>Piriz, A R</creator><creator>Tahir, N A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width</title><author>Piriz, S A ; Piriz, A R ; Tahir, N A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-54cf41308d0bd3ad3cab4348e58a4f937b7fc20176e53c80b9f365df99de2a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piriz, S A</creatorcontrib><creatorcontrib>Piriz, A R</creatorcontrib><creatorcontrib>Tahir, N A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piriz, S A</au><au>Piriz, A R</au><au>Tahir, N A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2018-04</date><risdate>2018</risdate><volume>97</volume><issue>4-1</issue><spage>043106</spage><epage>043106</epage><pages>043106-043106</pages><artnum>043106</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number A_{T}=1 and for sufficiently small values of A_{T}. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.</abstract><cop>United States</cop><pmid>29758639</pmid><doi>10.1103/PhysRevE.97.043106</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2018-04, Vol.97 (4-1), p.043106-043106, Article 043106 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2039289732 |
source | American Physical Society Journals |
title | Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Rayleigh-Taylor%20instability%20in%20an%20accelerated%20Newtonian%20fluid%20with%20finite%20width&rft.jtitle=Physical%20review.%20E&rft.au=Piriz,%20S%20A&rft.date=2018-04&rft.volume=97&rft.issue=4-1&rft.spage=043106&rft.epage=043106&rft.pages=043106-043106&rft.artnum=043106&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.97.043106&rft_dat=%3Cproquest_cross%3E2039289732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039289732&rft_id=info:pmid/29758639&rfr_iscdi=true |