Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width

The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects domi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2018-04, Vol.97 (4-1), p.043106-043106, Article 043106
Hauptverfasser: Piriz, S A, Piriz, A R, Tahir, N A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043106
container_issue 4-1
container_start_page 043106
container_title Physical review. E
container_volume 97
creator Piriz, S A
Piriz, A R
Tahir, N A
description The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number A_{T}=1 and for sufficiently small values of A_{T}. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.
doi_str_mv 10.1103/PhysRevE.97.043106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2039289732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039289732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-54cf41308d0bd3ad3cab4348e58a4f937b7fc20176e53c80b9f365df99de2a3e3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRbKn9Ah4kRy-psztJNnuUUv9AUSnVa9hkZ-1KmtTs1tJvb6S1MDCP4b3H8GPsmsOEc8C7t9XeL-hnNlFyAglyyM7YUCQSYoAUz086SQds7P0XAPAMlOTikg2EkmmeoRqyj7lrSHfRQu9rcp-reNmLtotc44MuXe3CvteR7qeqqKZOBzLRC-1C27j-auutM9HOhVVkXeMC9dqE1RW7sLr2ND7uEXt_mC2nT_H89fF5ej-PK0xFiNOksglHyA2UBrXBSpcJJjmluU6sQllKWwngMqMUqxxKZTFLjVXKkNBIOGK3h95N135vyYdi7Xz_Z60bare-EIBK5Eqi6K3iYK261vuObLHp3Fp3-4JD8Ye0-EdaKFkckPahm2P_tlyTOUX-AeIvaiN0XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039289732</pqid></control><display><type>article</type><title>Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width</title><source>American Physical Society Journals</source><creator>Piriz, S A ; Piriz, A R ; Tahir, N A</creator><creatorcontrib>Piriz, S A ; Piriz, A R ; Tahir, N A</creatorcontrib><description>The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number A_{T}=1 and for sufficiently small values of A_{T}. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.97.043106</identifier><identifier>PMID: 29758639</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2018-04, Vol.97 (4-1), p.043106-043106, Article 043106</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-54cf41308d0bd3ad3cab4348e58a4f937b7fc20176e53c80b9f365df99de2a3e3</citedby><cites>FETCH-LOGICAL-c352t-54cf41308d0bd3ad3cab4348e58a4f937b7fc20176e53c80b9f365df99de2a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29758639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piriz, S A</creatorcontrib><creatorcontrib>Piriz, A R</creatorcontrib><creatorcontrib>Tahir, N A</creatorcontrib><title>Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number A_{T}=1 and for sufficiently small values of A_{T}. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxRdRbKn9Ah4kRy-psztJNnuUUv9AUSnVa9hkZ-1KmtTs1tJvb6S1MDCP4b3H8GPsmsOEc8C7t9XeL-hnNlFyAglyyM7YUCQSYoAUz086SQds7P0XAPAMlOTikg2EkmmeoRqyj7lrSHfRQu9rcp-reNmLtotc44MuXe3CvteR7qeqqKZOBzLRC-1C27j-auutM9HOhVVkXeMC9dqE1RW7sLr2ND7uEXt_mC2nT_H89fF5ej-PK0xFiNOksglHyA2UBrXBSpcJJjmluU6sQllKWwngMqMUqxxKZTFLjVXKkNBIOGK3h95N135vyYdi7Xz_Z60bare-EIBK5Eqi6K3iYK261vuObLHp3Fp3-4JD8Ye0-EdaKFkckPahm2P_tlyTOUX-AeIvaiN0XA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Piriz, S A</creator><creator>Piriz, A R</creator><creator>Tahir, N A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width</title><author>Piriz, S A ; Piriz, A R ; Tahir, N A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-54cf41308d0bd3ad3cab4348e58a4f937b7fc20176e53c80b9f365df99de2a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piriz, S A</creatorcontrib><creatorcontrib>Piriz, A R</creatorcontrib><creatorcontrib>Tahir, N A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piriz, S A</au><au>Piriz, A R</au><au>Tahir, N A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2018-04</date><risdate>2018</risdate><volume>97</volume><issue>4-1</issue><spage>043106</spage><epage>043106</epage><pages>043106-043106</pages><artnum>043106</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number A_{T}=1 and for sufficiently small values of A_{T}. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.</abstract><cop>United States</cop><pmid>29758639</pmid><doi>10.1103/PhysRevE.97.043106</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2018-04, Vol.97 (4-1), p.043106-043106, Article 043106
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2039289732
source American Physical Society Journals
title Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Rayleigh-Taylor%20instability%20in%20an%20accelerated%20Newtonian%20fluid%20with%20finite%20width&rft.jtitle=Physical%20review.%20E&rft.au=Piriz,%20S%20A&rft.date=2018-04&rft.volume=97&rft.issue=4-1&rft.spage=043106&rft.epage=043106&rft.pages=043106-043106&rft.artnum=043106&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.97.043106&rft_dat=%3Cproquest_cross%3E2039289732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039289732&rft_id=info:pmid/29758639&rfr_iscdi=true