Preferential Pt Nanocluster Seeding at Grain Boundary Dislocations in Polycrystalline Monolayer MoS2

We show that Pt nanoclusters preferentially nucleate along the grain boundaries (GBs) in polycrystalline MoS2 monolayer films, with dislocations acting as the seed site. Atomic resolution studies by aberration-corrected annular dark-field scanning transmission electron microscopy reveal periodic spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-06, Vol.12 (6), p.5626-5636
Hauptverfasser: Wang, Shanshan, Sawada, Hidetaka, Han, Xiaoyu, Zhou, Si, Li, Sha, Guo, Zheng Xiao, Kirkland, Angus I, Warner, Jamie H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5636
container_issue 6
container_start_page 5626
container_title ACS nano
container_volume 12
creator Wang, Shanshan
Sawada, Hidetaka
Han, Xiaoyu
Zhou, Si
Li, Sha
Guo, Zheng Xiao
Kirkland, Angus I
Warner, Jamie H
description We show that Pt nanoclusters preferentially nucleate along the grain boundaries (GBs) in polycrystalline MoS2 monolayer films, with dislocations acting as the seed site. Atomic resolution studies by aberration-corrected annular dark-field scanning transmission electron microscopy reveal periodic spacing of Pt nanoclusters with dependence on GB tilt angles and random spacings for the antiphase boundaries (i.e., 60°). Individual Pt atoms are imaged within the dislocation core sections of the GB region, with various positions observed, including both the substitutional sites of Mo and the hollow center of the octahedral ring. The evolution from single atoms or small few atom clusters to nanosized particles of Pt is examined at the atomic level to gain a deep understanding of the pathways of Pt seed nucleation and growth at the GB. Density functional theory calculations confirm the energetic advantage of trapping Pt at dislocations on both the antiphase boundary and the small-angle GB rather than on the pristine lattice. The selective decoration of GBs by Pt nanoparticles also has a beneficial use to easily identify GB areas during microscopic-scale observations and track long-range nanoscale variances of GBs with spatial detail not easy to achieve using other methods. We show that GBs have nanoscale meandering across micron-scale distances with no strong preference for specific lattice directions across macroscopic ranges.
doi_str_mv 10.1021/acsnano.8b01418
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2039289643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039289643</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-8b7085581102eeebe01b8db099e6d50eecae542cde1af24e55befa1422229f2a3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtnrzkKsjUfu9vsUatWodVCFbwts9lZ2RITTbKH_e-NtDiXGZjH470fIZeczTgT_AZ0sGDdTDWM51wdkQmvZJkxVX4c_98FPyVnIewYK-ZqXk5Iu_HYoUcbezB0E-lL8tBmCBE93SK2vf2kEOnSQ2_pnRtsC36k930wTkPsnQ00PTbOjNqPIYIxvUW6dtYZGJPH2m3FOTnpwAS8OOwpeX98eFs8ZavX5fPidpWBlDxmqpmnhIXiqQ8iNsh4o9qGVRWWbcEQNWCRC90ih07kWBQNdsBzkabqBMgpudr7fnv3M2CI9VcfNBoDFt0QasFkJVRV5jJJr_fShK3eucHbFKzmrP5jWR9Y1geW8hcYKmr3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039289643</pqid></control><display><type>article</type><title>Preferential Pt Nanocluster Seeding at Grain Boundary Dislocations in Polycrystalline Monolayer MoS2</title><source>ACS Publications</source><creator>Wang, Shanshan ; Sawada, Hidetaka ; Han, Xiaoyu ; Zhou, Si ; Li, Sha ; Guo, Zheng Xiao ; Kirkland, Angus I ; Warner, Jamie H</creator><creatorcontrib>Wang, Shanshan ; Sawada, Hidetaka ; Han, Xiaoyu ; Zhou, Si ; Li, Sha ; Guo, Zheng Xiao ; Kirkland, Angus I ; Warner, Jamie H</creatorcontrib><description>We show that Pt nanoclusters preferentially nucleate along the grain boundaries (GBs) in polycrystalline MoS2 monolayer films, with dislocations acting as the seed site. Atomic resolution studies by aberration-corrected annular dark-field scanning transmission electron microscopy reveal periodic spacing of Pt nanoclusters with dependence on GB tilt angles and random spacings for the antiphase boundaries (i.e., 60°). Individual Pt atoms are imaged within the dislocation core sections of the GB region, with various positions observed, including both the substitutional sites of Mo and the hollow center of the octahedral ring. The evolution from single atoms or small few atom clusters to nanosized particles of Pt is examined at the atomic level to gain a deep understanding of the pathways of Pt seed nucleation and growth at the GB. Density functional theory calculations confirm the energetic advantage of trapping Pt at dislocations on both the antiphase boundary and the small-angle GB rather than on the pristine lattice. The selective decoration of GBs by Pt nanoparticles also has a beneficial use to easily identify GB areas during microscopic-scale observations and track long-range nanoscale variances of GBs with spatial detail not easy to achieve using other methods. We show that GBs have nanoscale meandering across micron-scale distances with no strong preference for specific lattice directions across macroscopic ranges.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b01418</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2018-06, Vol.12 (6), p.5626-5636</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5404-3215 ; 0000-0003-3750-6737 ; 0000-0002-1271-2019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b01418$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b01418$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Sawada, Hidetaka</creatorcontrib><creatorcontrib>Han, Xiaoyu</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Li, Sha</creatorcontrib><creatorcontrib>Guo, Zheng Xiao</creatorcontrib><creatorcontrib>Kirkland, Angus I</creatorcontrib><creatorcontrib>Warner, Jamie H</creatorcontrib><title>Preferential Pt Nanocluster Seeding at Grain Boundary Dislocations in Polycrystalline Monolayer MoS2</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We show that Pt nanoclusters preferentially nucleate along the grain boundaries (GBs) in polycrystalline MoS2 monolayer films, with dislocations acting as the seed site. Atomic resolution studies by aberration-corrected annular dark-field scanning transmission electron microscopy reveal periodic spacing of Pt nanoclusters with dependence on GB tilt angles and random spacings for the antiphase boundaries (i.e., 60°). Individual Pt atoms are imaged within the dislocation core sections of the GB region, with various positions observed, including both the substitutional sites of Mo and the hollow center of the octahedral ring. The evolution from single atoms or small few atom clusters to nanosized particles of Pt is examined at the atomic level to gain a deep understanding of the pathways of Pt seed nucleation and growth at the GB. Density functional theory calculations confirm the energetic advantage of trapping Pt at dislocations on both the antiphase boundary and the small-angle GB rather than on the pristine lattice. The selective decoration of GBs by Pt nanoparticles also has a beneficial use to easily identify GB areas during microscopic-scale observations and track long-range nanoscale variances of GBs with spatial detail not easy to achieve using other methods. We show that GBs have nanoscale meandering across micron-scale distances with no strong preference for specific lattice directions across macroscopic ranges.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKtnrzkKsjUfu9vsUatWodVCFbwts9lZ2RITTbKH_e-NtDiXGZjH470fIZeczTgT_AZ0sGDdTDWM51wdkQmvZJkxVX4c_98FPyVnIewYK-ZqXk5Iu_HYoUcbezB0E-lL8tBmCBE93SK2vf2kEOnSQ2_pnRtsC36k930wTkPsnQ00PTbOjNqPIYIxvUW6dtYZGJPH2m3FOTnpwAS8OOwpeX98eFs8ZavX5fPidpWBlDxmqpmnhIXiqQ8iNsh4o9qGVRWWbcEQNWCRC90ih07kWBQNdsBzkabqBMgpudr7fnv3M2CI9VcfNBoDFt0QasFkJVRV5jJJr_fShK3eucHbFKzmrP5jWR9Y1geW8hcYKmr3</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Wang, Shanshan</creator><creator>Sawada, Hidetaka</creator><creator>Han, Xiaoyu</creator><creator>Zhou, Si</creator><creator>Li, Sha</creator><creator>Guo, Zheng Xiao</creator><creator>Kirkland, Angus I</creator><creator>Warner, Jamie H</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5404-3215</orcidid><orcidid>https://orcid.org/0000-0003-3750-6737</orcidid><orcidid>https://orcid.org/0000-0002-1271-2019</orcidid></search><sort><creationdate>20180626</creationdate><title>Preferential Pt Nanocluster Seeding at Grain Boundary Dislocations in Polycrystalline Monolayer MoS2</title><author>Wang, Shanshan ; Sawada, Hidetaka ; Han, Xiaoyu ; Zhou, Si ; Li, Sha ; Guo, Zheng Xiao ; Kirkland, Angus I ; Warner, Jamie H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-8b7085581102eeebe01b8db099e6d50eecae542cde1af24e55befa1422229f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Sawada, Hidetaka</creatorcontrib><creatorcontrib>Han, Xiaoyu</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Li, Sha</creatorcontrib><creatorcontrib>Guo, Zheng Xiao</creatorcontrib><creatorcontrib>Kirkland, Angus I</creatorcontrib><creatorcontrib>Warner, Jamie H</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shanshan</au><au>Sawada, Hidetaka</au><au>Han, Xiaoyu</au><au>Zhou, Si</au><au>Li, Sha</au><au>Guo, Zheng Xiao</au><au>Kirkland, Angus I</au><au>Warner, Jamie H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferential Pt Nanocluster Seeding at Grain Boundary Dislocations in Polycrystalline Monolayer MoS2</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-06-26</date><risdate>2018</risdate><volume>12</volume><issue>6</issue><spage>5626</spage><epage>5636</epage><pages>5626-5636</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We show that Pt nanoclusters preferentially nucleate along the grain boundaries (GBs) in polycrystalline MoS2 monolayer films, with dislocations acting as the seed site. Atomic resolution studies by aberration-corrected annular dark-field scanning transmission electron microscopy reveal periodic spacing of Pt nanoclusters with dependence on GB tilt angles and random spacings for the antiphase boundaries (i.e., 60°). Individual Pt atoms are imaged within the dislocation core sections of the GB region, with various positions observed, including both the substitutional sites of Mo and the hollow center of the octahedral ring. The evolution from single atoms or small few atom clusters to nanosized particles of Pt is examined at the atomic level to gain a deep understanding of the pathways of Pt seed nucleation and growth at the GB. Density functional theory calculations confirm the energetic advantage of trapping Pt at dislocations on both the antiphase boundary and the small-angle GB rather than on the pristine lattice. The selective decoration of GBs by Pt nanoparticles also has a beneficial use to easily identify GB areas during microscopic-scale observations and track long-range nanoscale variances of GBs with spatial detail not easy to achieve using other methods. We show that GBs have nanoscale meandering across micron-scale distances with no strong preference for specific lattice directions across macroscopic ranges.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.8b01418</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5404-3215</orcidid><orcidid>https://orcid.org/0000-0003-3750-6737</orcidid><orcidid>https://orcid.org/0000-0002-1271-2019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-06, Vol.12 (6), p.5626-5636
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2039289643
source ACS Publications
title Preferential Pt Nanocluster Seeding at Grain Boundary Dislocations in Polycrystalline Monolayer MoS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferential%20Pt%20Nanocluster%20Seeding%20at%20Grain%20Boundary%20Dislocations%20in%20Polycrystalline%20Monolayer%20MoS2&rft.jtitle=ACS%20nano&rft.au=Wang,%20Shanshan&rft.date=2018-06-26&rft.volume=12&rft.issue=6&rft.spage=5626&rft.epage=5636&rft.pages=5626-5636&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b01418&rft_dat=%3Cproquest_acs_j%3E2039289643%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039289643&rft_id=info:pmid/&rfr_iscdi=true