Cardiac Ca2+ signalling in zebrafish: Translation of findings to man
Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although...
Gespeichert in:
Veröffentlicht in: | Progress in biophysics and molecular biology 2018-10, Vol.138, p.45-58 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | |
container_start_page | 45 |
container_title | Progress in biophysics and molecular biology |
container_volume | 138 |
creator | van Opbergen, Chantal J.M. van der Voorn, Stephanie M. Vos, Marc A. de Boer, Teun P. van Veen, Toon A.B. |
description | Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although the numerous electrophysiological discrepancies between mouse and human raise the question whether mice are the optimal model to study cardiac rhythm disorders. Recently it has been uncovered that the zebrafish cardiac electrophysiology seems surprisingly similar to the human heart, mainly because the zebrafish AP contains a clear plateau phase and ECG characteristics show alignment with the human ECG. Although, before using zebrafish as a model to study cardiac arrhythmogenesis, however, it is very important to gain a better insight into the electrophysiological characteristics of the zebrafish heart. In this review we outline the electrophysiological machinery of the zebrafish cardiomyocytes, with a special focus on the intracellular Ca2+ dynamics and excitation-contraction coupling. We debate the potential of zebrafish as a model to study human cardiovascular diseases and postulate steps to employ zebrafish into a more ‘humanized’ model. |
doi_str_mv | 10.1016/j.pbiomolbio.2018.05.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2038267247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610718300312</els_id><sourcerecordid>2038267247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-7dc582850ff1e3d1ae6d5ba8be19159729de8d6e11769488941d01cbb3b9a3653</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwD14ioQQ_mthhB-EpVWJT1pZjT4qrxC52igRfj6sisWQzszn3auYghCkpKaH19abcdi6MYcizZITKklQlIewIzagUvKCCs2M0I0Q0RU2JOEVnKW1IJqioZ-i-1dE6bXCr2RVObu31MDi_xs7jb-ii7l16v8GrqH0a9OSCx6HHvfM2QwlPAY_an6OTXg8JLn73HL09Pqza52L5-vTS3i4Lw3k9FcKaSjJZkb6nwC3VUNuq07ID2tCqEayxIG0NNF_WLKRsFtQSarqOd43mdcXn6PLQu43hYwdpUqNLBoZBewi7pBjhktWCLURG5QE1MaQUoVfb6EYdvxQlai9ObdSfOLUXp0ilspYcvTtEIb_y6SCqZBx4A9ZFMJOywf1f8gN1UXsp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038267247</pqid></control><display><type>article</type><title>Cardiac Ca2+ signalling in zebrafish: Translation of findings to man</title><source>Elsevier ScienceDirect Journals</source><creator>van Opbergen, Chantal J.M. ; van der Voorn, Stephanie M. ; Vos, Marc A. ; de Boer, Teun P. ; van Veen, Toon A.B.</creator><creatorcontrib>van Opbergen, Chantal J.M. ; van der Voorn, Stephanie M. ; Vos, Marc A. ; de Boer, Teun P. ; van Veen, Toon A.B.</creatorcontrib><description>Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although the numerous electrophysiological discrepancies between mouse and human raise the question whether mice are the optimal model to study cardiac rhythm disorders. Recently it has been uncovered that the zebrafish cardiac electrophysiology seems surprisingly similar to the human heart, mainly because the zebrafish AP contains a clear plateau phase and ECG characteristics show alignment with the human ECG. Although, before using zebrafish as a model to study cardiac arrhythmogenesis, however, it is very important to gain a better insight into the electrophysiological characteristics of the zebrafish heart. In this review we outline the electrophysiological machinery of the zebrafish cardiomyocytes, with a special focus on the intracellular Ca2+ dynamics and excitation-contraction coupling. We debate the potential of zebrafish as a model to study human cardiovascular diseases and postulate steps to employ zebrafish into a more ‘humanized’ model.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2018.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Ca2+ signalling ; Cardiac electrophysiology ; Zebrafish</subject><ispartof>Progress in biophysics and molecular biology, 2018-10, Vol.138, p.45-58</ispartof><rights>2018 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-7dc582850ff1e3d1ae6d5ba8be19159729de8d6e11769488941d01cbb3b9a3653</citedby><cites>FETCH-LOGICAL-c336t-7dc582850ff1e3d1ae6d5ba8be19159729de8d6e11769488941d01cbb3b9a3653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610718300312$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>van Opbergen, Chantal J.M.</creatorcontrib><creatorcontrib>van der Voorn, Stephanie M.</creatorcontrib><creatorcontrib>Vos, Marc A.</creatorcontrib><creatorcontrib>de Boer, Teun P.</creatorcontrib><creatorcontrib>van Veen, Toon A.B.</creatorcontrib><title>Cardiac Ca2+ signalling in zebrafish: Translation of findings to man</title><title>Progress in biophysics and molecular biology</title><description>Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although the numerous electrophysiological discrepancies between mouse and human raise the question whether mice are the optimal model to study cardiac rhythm disorders. Recently it has been uncovered that the zebrafish cardiac electrophysiology seems surprisingly similar to the human heart, mainly because the zebrafish AP contains a clear plateau phase and ECG characteristics show alignment with the human ECG. Although, before using zebrafish as a model to study cardiac arrhythmogenesis, however, it is very important to gain a better insight into the electrophysiological characteristics of the zebrafish heart. In this review we outline the electrophysiological machinery of the zebrafish cardiomyocytes, with a special focus on the intracellular Ca2+ dynamics and excitation-contraction coupling. We debate the potential of zebrafish as a model to study human cardiovascular diseases and postulate steps to employ zebrafish into a more ‘humanized’ model.</description><subject>Ca2+ signalling</subject><subject>Cardiac electrophysiology</subject><subject>Zebrafish</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwD14ioQQ_mthhB-EpVWJT1pZjT4qrxC52igRfj6sisWQzszn3auYghCkpKaH19abcdi6MYcizZITKklQlIewIzagUvKCCs2M0I0Q0RU2JOEVnKW1IJqioZ-i-1dE6bXCr2RVObu31MDi_xs7jb-ii7l16v8GrqH0a9OSCx6HHvfM2QwlPAY_an6OTXg8JLn73HL09Pqza52L5-vTS3i4Lw3k9FcKaSjJZkb6nwC3VUNuq07ID2tCqEayxIG0NNF_WLKRsFtQSarqOd43mdcXn6PLQu43hYwdpUqNLBoZBewi7pBjhktWCLURG5QE1MaQUoVfb6EYdvxQlai9ObdSfOLUXp0ilspYcvTtEIb_y6SCqZBx4A9ZFMJOywf1f8gN1UXsp</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>van Opbergen, Chantal J.M.</creator><creator>van der Voorn, Stephanie M.</creator><creator>Vos, Marc A.</creator><creator>de Boer, Teun P.</creator><creator>van Veen, Toon A.B.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201810</creationdate><title>Cardiac Ca2+ signalling in zebrafish: Translation of findings to man</title><author>van Opbergen, Chantal J.M. ; van der Voorn, Stephanie M. ; Vos, Marc A. ; de Boer, Teun P. ; van Veen, Toon A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-7dc582850ff1e3d1ae6d5ba8be19159729de8d6e11769488941d01cbb3b9a3653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ca2+ signalling</topic><topic>Cardiac electrophysiology</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Opbergen, Chantal J.M.</creatorcontrib><creatorcontrib>van der Voorn, Stephanie M.</creatorcontrib><creatorcontrib>Vos, Marc A.</creatorcontrib><creatorcontrib>de Boer, Teun P.</creatorcontrib><creatorcontrib>van Veen, Toon A.B.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Opbergen, Chantal J.M.</au><au>van der Voorn, Stephanie M.</au><au>Vos, Marc A.</au><au>de Boer, Teun P.</au><au>van Veen, Toon A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac Ca2+ signalling in zebrafish: Translation of findings to man</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><date>2018-10</date><risdate>2018</risdate><volume>138</volume><spage>45</spage><epage>58</epage><pages>45-58</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although the numerous electrophysiological discrepancies between mouse and human raise the question whether mice are the optimal model to study cardiac rhythm disorders. Recently it has been uncovered that the zebrafish cardiac electrophysiology seems surprisingly similar to the human heart, mainly because the zebrafish AP contains a clear plateau phase and ECG characteristics show alignment with the human ECG. Although, before using zebrafish as a model to study cardiac arrhythmogenesis, however, it is very important to gain a better insight into the electrophysiological characteristics of the zebrafish heart. In this review we outline the electrophysiological machinery of the zebrafish cardiomyocytes, with a special focus on the intracellular Ca2+ dynamics and excitation-contraction coupling. We debate the potential of zebrafish as a model to study human cardiovascular diseases and postulate steps to employ zebrafish into a more ‘humanized’ model.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.pbiomolbio.2018.05.002</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6107 |
ispartof | Progress in biophysics and molecular biology, 2018-10, Vol.138, p.45-58 |
issn | 0079-6107 1873-1732 |
language | eng |
recordid | cdi_proquest_miscellaneous_2038267247 |
source | Elsevier ScienceDirect Journals |
subjects | Ca2+ signalling Cardiac electrophysiology Zebrafish |
title | Cardiac Ca2+ signalling in zebrafish: Translation of findings to man |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac%20Ca2+%20signalling%20in%20zebrafish:%20Translation%20of%20findings%20to%20man&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=van%20Opbergen,%20Chantal%20J.M.&rft.date=2018-10&rft.volume=138&rft.spage=45&rft.epage=58&rft.pages=45-58&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2018.05.002&rft_dat=%3Cproquest_cross%3E2038267247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2038267247&rft_id=info:pmid/&rft_els_id=S0079610718300312&rfr_iscdi=true |