Interlaboratory validation of a CD71-based flow cytometric method (Microflow®) for the scoring of micronucleated reticulocytes in mouse peripheral blood

An interlaboratory study was performed to validate an anti‐CD71/flow cytometry‐based technique for enumerating micronucleated reticulocytes (MN‐RETs) in mouse peripheral blood. These experiments were designed to address International Workshop on Genotoxicity Test Procedures validation criteria by ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental and molecular mutagenesis 2005, Vol.45 (1), p.44-55
Hauptverfasser: Torous, Dorothea K., Hall, Nikki E., Illi-Love, Anne H., Diehl, Marilyn S., Cederbrant, Karin, Sandelin, Kerstin, Pontén, Ingrid, Bolcsfoldi, George, Ferguson, Lynnette R., Pearson, Amira, Majeska, Jenness B., Tarca, James P., Hynes, Geoffrey M., Lynch, Anthony M., McNamee, James P., Bellier, Pascale V., Parenteau, Monique, Blakey, David, Bayley, Janet, van der Leede, Bas-Jan M., Vanparys, Philippe, Harbach, Philip R., Zhao, Shuou, Filipunas, Anthony L., Johnson, Carol W., Tometsko, Carol R., Dertinger, Stephen D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 44
container_title Environmental and molecular mutagenesis
container_volume 45
creator Torous, Dorothea K.
Hall, Nikki E.
Illi-Love, Anne H.
Diehl, Marilyn S.
Cederbrant, Karin
Sandelin, Kerstin
Pontén, Ingrid
Bolcsfoldi, George
Ferguson, Lynnette R.
Pearson, Amira
Majeska, Jenness B.
Tarca, James P.
Hynes, Geoffrey M.
Lynch, Anthony M.
McNamee, James P.
Bellier, Pascale V.
Parenteau, Monique
Blakey, David
Bayley, Janet
van der Leede, Bas-Jan M.
Vanparys, Philippe
Harbach, Philip R.
Zhao, Shuou
Filipunas, Anthony L.
Johnson, Carol W.
Tometsko, Carol R.
Dertinger, Stephen D.
description An interlaboratory study was performed to validate an anti‐CD71/flow cytometry‐based technique for enumerating micronucleated reticulocytes (MN‐RETs) in mouse peripheral blood. These experiments were designed to address International Workshop on Genotoxicity Test Procedures validation criteria by evaluating the degree of correspondence between MN‐RET measurements generated by flow cytometry (FCM) with those obtained using traditional microscopy‐based methods. In addition to these cross‐methods data, flow cytometric MN‐RET measurements for each blood sample were performed at two separate sites in order to evaluate the reproducibility of data between laboratories. In these studies, groups of male CD‐1 mice were treated with vehicle (saline or vegetable oil), a negative control (saline or vegetable oil), or four dose levels of five known genotoxicants (clastogens: cyclophosphamide, benzo[a]pyrene, 5‐fluorouracil, methotrexate; aneugen: vincristine sulfate). Exposure occurred on 3 consecutive days via intraperitoneal injection, and blood samples were obtained approximately 24 hr after the final treatment. MN‐RET frequencies were determined for each sample based on the analysis of 2,000 (microscopy) and 20,000 (FCM) reticulocytes. Regardless of the method utilized, each genotoxic agent was observed to cause statistically significant increases in the frequency of MN‐RETs, and each response occurred in a dose‐dependent manner. Spearman's correlation coefficient (rs) for FCM versus microscopy‐based MN‐RET measurements (nine experiments, 252 paired measurements) was 0.740, indicating a high degree of correspondence between methods. The rs value for all flow cytometric MN‐RET measurements performed at the two independent sites was 0.857 (n = 248), suggesting that the automated method is highly transferable between laboratories. Additionally, the flow cytometric system offered advantages relative to microscopy‐based scoring, including a greater number of cells analyzed, much faster analysis times, and a greater degree of objectivity. Collectively, data presented in this report suggest that the overall performance of mouse peripheral blood micronucleus tests is enhanced by the use of the flow cytometric scoring procedure. Environ. Mol. Mutagen., 2005. © 2004 Wiley‐Liss, Inc.
doi_str_mv 10.1002/em.20081
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_20379682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20379682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3001-a9453c69535eb985e3d708d8a3afb215e36c6cf66e912278efe6270eb6d8729e3</originalsourceid><addsrcrecordid>eNpFkU1uFDEQhS0EIpOAxAmQN6Cw6OCftH-WaEhC0AQkFGBpud3VjMHdHmw3YY7CJTgEJ6M7GZjVU-l9eqqqh9ATSk4oIewl9CeMEEXvoQUlWlWMKXIfLYjSvBJCswN0mPNXQig91ewhOqC1IDWv6wX6dTkUSME2MdkS0xb_sMG3tvg44Nhhi5evJa0am6HFXYg32G1L7KEk7_Ak69ji4yvvUpzNP79f4C4mXNaAs4vJD1_mkH72h9EFsGWKSVC8G0OckiBjP-A-jhnwBpLfrCHZgJsQY_sIPehsyPB4p0fo4_nZ9fJNtXp_cbl8taocnw6qrD6tuRN6OgcarWrgrSSqVZbbrmF0moUTrhMCNGVMKuhAMEmgEa2STAM_Qs_vcjcpfh8hF9P77CAEO8C0mGGESy0Um8CnO3BsemjNJvnepq3598wJeLYDbHY2dMkOzuc9JwQnks9cdcfd-ADbvU_MXKaB3tyWac6ubnXP-1zg53_epm9GSC5r8_ndhfmwqvX5W_LJXPO_QcuiZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20379682</pqid></control><display><type>article</type><title>Interlaboratory validation of a CD71-based flow cytometric method (Microflow®) for the scoring of micronucleated reticulocytes in mouse peripheral blood</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Torous, Dorothea K. ; Hall, Nikki E. ; Illi-Love, Anne H. ; Diehl, Marilyn S. ; Cederbrant, Karin ; Sandelin, Kerstin ; Pontén, Ingrid ; Bolcsfoldi, George ; Ferguson, Lynnette R. ; Pearson, Amira ; Majeska, Jenness B. ; Tarca, James P. ; Hynes, Geoffrey M. ; Lynch, Anthony M. ; McNamee, James P. ; Bellier, Pascale V. ; Parenteau, Monique ; Blakey, David ; Bayley, Janet ; van der Leede, Bas-Jan M. ; Vanparys, Philippe ; Harbach, Philip R. ; Zhao, Shuou ; Filipunas, Anthony L. ; Johnson, Carol W. ; Tometsko, Carol R. ; Dertinger, Stephen D.</creator><creatorcontrib>Torous, Dorothea K. ; Hall, Nikki E. ; Illi-Love, Anne H. ; Diehl, Marilyn S. ; Cederbrant, Karin ; Sandelin, Kerstin ; Pontén, Ingrid ; Bolcsfoldi, George ; Ferguson, Lynnette R. ; Pearson, Amira ; Majeska, Jenness B. ; Tarca, James P. ; Hynes, Geoffrey M. ; Lynch, Anthony M. ; McNamee, James P. ; Bellier, Pascale V. ; Parenteau, Monique ; Blakey, David ; Bayley, Janet ; van der Leede, Bas-Jan M. ; Vanparys, Philippe ; Harbach, Philip R. ; Zhao, Shuou ; Filipunas, Anthony L. ; Johnson, Carol W. ; Tometsko, Carol R. ; Dertinger, Stephen D.</creatorcontrib><description>An interlaboratory study was performed to validate an anti‐CD71/flow cytometry‐based technique for enumerating micronucleated reticulocytes (MN‐RETs) in mouse peripheral blood. These experiments were designed to address International Workshop on Genotoxicity Test Procedures validation criteria by evaluating the degree of correspondence between MN‐RET measurements generated by flow cytometry (FCM) with those obtained using traditional microscopy‐based methods. In addition to these cross‐methods data, flow cytometric MN‐RET measurements for each blood sample were performed at two separate sites in order to evaluate the reproducibility of data between laboratories. In these studies, groups of male CD‐1 mice were treated with vehicle (saline or vegetable oil), a negative control (saline or vegetable oil), or four dose levels of five known genotoxicants (clastogens: cyclophosphamide, benzo[a]pyrene, 5‐fluorouracil, methotrexate; aneugen: vincristine sulfate). Exposure occurred on 3 consecutive days via intraperitoneal injection, and blood samples were obtained approximately 24 hr after the final treatment. MN‐RET frequencies were determined for each sample based on the analysis of 2,000 (microscopy) and 20,000 (FCM) reticulocytes. Regardless of the method utilized, each genotoxic agent was observed to cause statistically significant increases in the frequency of MN‐RETs, and each response occurred in a dose‐dependent manner. Spearman's correlation coefficient (rs) for FCM versus microscopy‐based MN‐RET measurements (nine experiments, 252 paired measurements) was 0.740, indicating a high degree of correspondence between methods. The rs value for all flow cytometric MN‐RET measurements performed at the two independent sites was 0.857 (n = 248), suggesting that the automated method is highly transferable between laboratories. Additionally, the flow cytometric system offered advantages relative to microscopy‐based scoring, including a greater number of cells analyzed, much faster analysis times, and a greater degree of objectivity. Collectively, data presented in this report suggest that the overall performance of mouse peripheral blood micronucleus tests is enhanced by the use of the flow cytometric scoring procedure. Environ. Mol. Mutagen., 2005. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0893-6692</identifier><identifier>EISSN: 1098-2280</identifier><identifier>DOI: 10.1002/em.20081</identifier><identifier>PMID: 15605355</identifier><identifier>CODEN: EMMUEG</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Antigens, CD ; Antigens, Differentiation, B-Lymphocyte ; Benzo(a)pyrene - toxicity ; Biological and medical sciences ; CD71 ; Cyclophosphamide - toxicity ; Dose-Response Relationship, Drug ; flow cytometry ; Flow Cytometry - methods ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; interlaboratory ; Male ; Medical sciences ; Methotrexate - toxicity ; Mice ; micronuclei ; Micronucleus Tests - methods ; Mutagens - toxicity ; Receptors, Transferrin ; Reticulocytes ; Toxicology ; validation ; Vincristine - toxicity</subject><ispartof>Environmental and molecular mutagenesis, 2005, Vol.45 (1), p.44-55</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3001-a9453c69535eb985e3d708d8a3afb215e36c6cf66e912278efe6270eb6d8729e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fem.20081$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fem.20081$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16630735$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15605355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torous, Dorothea K.</creatorcontrib><creatorcontrib>Hall, Nikki E.</creatorcontrib><creatorcontrib>Illi-Love, Anne H.</creatorcontrib><creatorcontrib>Diehl, Marilyn S.</creatorcontrib><creatorcontrib>Cederbrant, Karin</creatorcontrib><creatorcontrib>Sandelin, Kerstin</creatorcontrib><creatorcontrib>Pontén, Ingrid</creatorcontrib><creatorcontrib>Bolcsfoldi, George</creatorcontrib><creatorcontrib>Ferguson, Lynnette R.</creatorcontrib><creatorcontrib>Pearson, Amira</creatorcontrib><creatorcontrib>Majeska, Jenness B.</creatorcontrib><creatorcontrib>Tarca, James P.</creatorcontrib><creatorcontrib>Hynes, Geoffrey M.</creatorcontrib><creatorcontrib>Lynch, Anthony M.</creatorcontrib><creatorcontrib>McNamee, James P.</creatorcontrib><creatorcontrib>Bellier, Pascale V.</creatorcontrib><creatorcontrib>Parenteau, Monique</creatorcontrib><creatorcontrib>Blakey, David</creatorcontrib><creatorcontrib>Bayley, Janet</creatorcontrib><creatorcontrib>van der Leede, Bas-Jan M.</creatorcontrib><creatorcontrib>Vanparys, Philippe</creatorcontrib><creatorcontrib>Harbach, Philip R.</creatorcontrib><creatorcontrib>Zhao, Shuou</creatorcontrib><creatorcontrib>Filipunas, Anthony L.</creatorcontrib><creatorcontrib>Johnson, Carol W.</creatorcontrib><creatorcontrib>Tometsko, Carol R.</creatorcontrib><creatorcontrib>Dertinger, Stephen D.</creatorcontrib><title>Interlaboratory validation of a CD71-based flow cytometric method (Microflow®) for the scoring of micronucleated reticulocytes in mouse peripheral blood</title><title>Environmental and molecular mutagenesis</title><addtitle>Environ. Mol. Mutagen</addtitle><description>An interlaboratory study was performed to validate an anti‐CD71/flow cytometry‐based technique for enumerating micronucleated reticulocytes (MN‐RETs) in mouse peripheral blood. These experiments were designed to address International Workshop on Genotoxicity Test Procedures validation criteria by evaluating the degree of correspondence between MN‐RET measurements generated by flow cytometry (FCM) with those obtained using traditional microscopy‐based methods. In addition to these cross‐methods data, flow cytometric MN‐RET measurements for each blood sample were performed at two separate sites in order to evaluate the reproducibility of data between laboratories. In these studies, groups of male CD‐1 mice were treated with vehicle (saline or vegetable oil), a negative control (saline or vegetable oil), or four dose levels of five known genotoxicants (clastogens: cyclophosphamide, benzo[a]pyrene, 5‐fluorouracil, methotrexate; aneugen: vincristine sulfate). Exposure occurred on 3 consecutive days via intraperitoneal injection, and blood samples were obtained approximately 24 hr after the final treatment. MN‐RET frequencies were determined for each sample based on the analysis of 2,000 (microscopy) and 20,000 (FCM) reticulocytes. Regardless of the method utilized, each genotoxic agent was observed to cause statistically significant increases in the frequency of MN‐RETs, and each response occurred in a dose‐dependent manner. Spearman's correlation coefficient (rs) for FCM versus microscopy‐based MN‐RET measurements (nine experiments, 252 paired measurements) was 0.740, indicating a high degree of correspondence between methods. The rs value for all flow cytometric MN‐RET measurements performed at the two independent sites was 0.857 (n = 248), suggesting that the automated method is highly transferable between laboratories. Additionally, the flow cytometric system offered advantages relative to microscopy‐based scoring, including a greater number of cells analyzed, much faster analysis times, and a greater degree of objectivity. Collectively, data presented in this report suggest that the overall performance of mouse peripheral blood micronucleus tests is enhanced by the use of the flow cytometric scoring procedure. Environ. Mol. Mutagen., 2005. © 2004 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Antigens, CD</subject><subject>Antigens, Differentiation, B-Lymphocyte</subject><subject>Benzo(a)pyrene - toxicity</subject><subject>Biological and medical sciences</subject><subject>CD71</subject><subject>Cyclophosphamide - toxicity</subject><subject>Dose-Response Relationship, Drug</subject><subject>flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>interlaboratory</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Methotrexate - toxicity</subject><subject>Mice</subject><subject>micronuclei</subject><subject>Micronucleus Tests - methods</subject><subject>Mutagens - toxicity</subject><subject>Receptors, Transferrin</subject><subject>Reticulocytes</subject><subject>Toxicology</subject><subject>validation</subject><subject>Vincristine - toxicity</subject><issn>0893-6692</issn><issn>1098-2280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU1uFDEQhS0EIpOAxAmQN6Cw6OCftH-WaEhC0AQkFGBpud3VjMHdHmw3YY7CJTgEJ6M7GZjVU-l9eqqqh9ATSk4oIewl9CeMEEXvoQUlWlWMKXIfLYjSvBJCswN0mPNXQig91ewhOqC1IDWv6wX6dTkUSME2MdkS0xb_sMG3tvg44Nhhi5evJa0am6HFXYg32G1L7KEk7_Ak69ji4yvvUpzNP79f4C4mXNaAs4vJD1_mkH72h9EFsGWKSVC8G0OckiBjP-A-jhnwBpLfrCHZgJsQY_sIPehsyPB4p0fo4_nZ9fJNtXp_cbl8taocnw6qrD6tuRN6OgcarWrgrSSqVZbbrmF0moUTrhMCNGVMKuhAMEmgEa2STAM_Qs_vcjcpfh8hF9P77CAEO8C0mGGESy0Um8CnO3BsemjNJvnepq3598wJeLYDbHY2dMkOzuc9JwQnks9cdcfd-ADbvU_MXKaB3tyWac6ubnXP-1zg53_epm9GSC5r8_ndhfmwqvX5W_LJXPO_QcuiZw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Torous, Dorothea K.</creator><creator>Hall, Nikki E.</creator><creator>Illi-Love, Anne H.</creator><creator>Diehl, Marilyn S.</creator><creator>Cederbrant, Karin</creator><creator>Sandelin, Kerstin</creator><creator>Pontén, Ingrid</creator><creator>Bolcsfoldi, George</creator><creator>Ferguson, Lynnette R.</creator><creator>Pearson, Amira</creator><creator>Majeska, Jenness B.</creator><creator>Tarca, James P.</creator><creator>Hynes, Geoffrey M.</creator><creator>Lynch, Anthony M.</creator><creator>McNamee, James P.</creator><creator>Bellier, Pascale V.</creator><creator>Parenteau, Monique</creator><creator>Blakey, David</creator><creator>Bayley, Janet</creator><creator>van der Leede, Bas-Jan M.</creator><creator>Vanparys, Philippe</creator><creator>Harbach, Philip R.</creator><creator>Zhao, Shuou</creator><creator>Filipunas, Anthony L.</creator><creator>Johnson, Carol W.</creator><creator>Tometsko, Carol R.</creator><creator>Dertinger, Stephen D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>2005</creationdate><title>Interlaboratory validation of a CD71-based flow cytometric method (Microflow®) for the scoring of micronucleated reticulocytes in mouse peripheral blood</title><author>Torous, Dorothea K. ; Hall, Nikki E. ; Illi-Love, Anne H. ; Diehl, Marilyn S. ; Cederbrant, Karin ; Sandelin, Kerstin ; Pontén, Ingrid ; Bolcsfoldi, George ; Ferguson, Lynnette R. ; Pearson, Amira ; Majeska, Jenness B. ; Tarca, James P. ; Hynes, Geoffrey M. ; Lynch, Anthony M. ; McNamee, James P. ; Bellier, Pascale V. ; Parenteau, Monique ; Blakey, David ; Bayley, Janet ; van der Leede, Bas-Jan M. ; Vanparys, Philippe ; Harbach, Philip R. ; Zhao, Shuou ; Filipunas, Anthony L. ; Johnson, Carol W. ; Tometsko, Carol R. ; Dertinger, Stephen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3001-a9453c69535eb985e3d708d8a3afb215e36c6cf66e912278efe6270eb6d8729e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Antigens, CD</topic><topic>Antigens, Differentiation, B-Lymphocyte</topic><topic>Benzo(a)pyrene - toxicity</topic><topic>Biological and medical sciences</topic><topic>CD71</topic><topic>Cyclophosphamide - toxicity</topic><topic>Dose-Response Relationship, Drug</topic><topic>flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>interlaboratory</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Methotrexate - toxicity</topic><topic>Mice</topic><topic>micronuclei</topic><topic>Micronucleus Tests - methods</topic><topic>Mutagens - toxicity</topic><topic>Receptors, Transferrin</topic><topic>Reticulocytes</topic><topic>Toxicology</topic><topic>validation</topic><topic>Vincristine - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torous, Dorothea K.</creatorcontrib><creatorcontrib>Hall, Nikki E.</creatorcontrib><creatorcontrib>Illi-Love, Anne H.</creatorcontrib><creatorcontrib>Diehl, Marilyn S.</creatorcontrib><creatorcontrib>Cederbrant, Karin</creatorcontrib><creatorcontrib>Sandelin, Kerstin</creatorcontrib><creatorcontrib>Pontén, Ingrid</creatorcontrib><creatorcontrib>Bolcsfoldi, George</creatorcontrib><creatorcontrib>Ferguson, Lynnette R.</creatorcontrib><creatorcontrib>Pearson, Amira</creatorcontrib><creatorcontrib>Majeska, Jenness B.</creatorcontrib><creatorcontrib>Tarca, James P.</creatorcontrib><creatorcontrib>Hynes, Geoffrey M.</creatorcontrib><creatorcontrib>Lynch, Anthony M.</creatorcontrib><creatorcontrib>McNamee, James P.</creatorcontrib><creatorcontrib>Bellier, Pascale V.</creatorcontrib><creatorcontrib>Parenteau, Monique</creatorcontrib><creatorcontrib>Blakey, David</creatorcontrib><creatorcontrib>Bayley, Janet</creatorcontrib><creatorcontrib>van der Leede, Bas-Jan M.</creatorcontrib><creatorcontrib>Vanparys, Philippe</creatorcontrib><creatorcontrib>Harbach, Philip R.</creatorcontrib><creatorcontrib>Zhao, Shuou</creatorcontrib><creatorcontrib>Filipunas, Anthony L.</creatorcontrib><creatorcontrib>Johnson, Carol W.</creatorcontrib><creatorcontrib>Tometsko, Carol R.</creatorcontrib><creatorcontrib>Dertinger, Stephen D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Environmental and molecular mutagenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torous, Dorothea K.</au><au>Hall, Nikki E.</au><au>Illi-Love, Anne H.</au><au>Diehl, Marilyn S.</au><au>Cederbrant, Karin</au><au>Sandelin, Kerstin</au><au>Pontén, Ingrid</au><au>Bolcsfoldi, George</au><au>Ferguson, Lynnette R.</au><au>Pearson, Amira</au><au>Majeska, Jenness B.</au><au>Tarca, James P.</au><au>Hynes, Geoffrey M.</au><au>Lynch, Anthony M.</au><au>McNamee, James P.</au><au>Bellier, Pascale V.</au><au>Parenteau, Monique</au><au>Blakey, David</au><au>Bayley, Janet</au><au>van der Leede, Bas-Jan M.</au><au>Vanparys, Philippe</au><au>Harbach, Philip R.</au><au>Zhao, Shuou</au><au>Filipunas, Anthony L.</au><au>Johnson, Carol W.</au><au>Tometsko, Carol R.</au><au>Dertinger, Stephen D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interlaboratory validation of a CD71-based flow cytometric method (Microflow®) for the scoring of micronucleated reticulocytes in mouse peripheral blood</atitle><jtitle>Environmental and molecular mutagenesis</jtitle><addtitle>Environ. Mol. Mutagen</addtitle><date>2005</date><risdate>2005</risdate><volume>45</volume><issue>1</issue><spage>44</spage><epage>55</epage><pages>44-55</pages><issn>0893-6692</issn><eissn>1098-2280</eissn><coden>EMMUEG</coden><abstract>An interlaboratory study was performed to validate an anti‐CD71/flow cytometry‐based technique for enumerating micronucleated reticulocytes (MN‐RETs) in mouse peripheral blood. These experiments were designed to address International Workshop on Genotoxicity Test Procedures validation criteria by evaluating the degree of correspondence between MN‐RET measurements generated by flow cytometry (FCM) with those obtained using traditional microscopy‐based methods. In addition to these cross‐methods data, flow cytometric MN‐RET measurements for each blood sample were performed at two separate sites in order to evaluate the reproducibility of data between laboratories. In these studies, groups of male CD‐1 mice were treated with vehicle (saline or vegetable oil), a negative control (saline or vegetable oil), or four dose levels of five known genotoxicants (clastogens: cyclophosphamide, benzo[a]pyrene, 5‐fluorouracil, methotrexate; aneugen: vincristine sulfate). Exposure occurred on 3 consecutive days via intraperitoneal injection, and blood samples were obtained approximately 24 hr after the final treatment. MN‐RET frequencies were determined for each sample based on the analysis of 2,000 (microscopy) and 20,000 (FCM) reticulocytes. Regardless of the method utilized, each genotoxic agent was observed to cause statistically significant increases in the frequency of MN‐RETs, and each response occurred in a dose‐dependent manner. Spearman's correlation coefficient (rs) for FCM versus microscopy‐based MN‐RET measurements (nine experiments, 252 paired measurements) was 0.740, indicating a high degree of correspondence between methods. The rs value for all flow cytometric MN‐RET measurements performed at the two independent sites was 0.857 (n = 248), suggesting that the automated method is highly transferable between laboratories. Additionally, the flow cytometric system offered advantages relative to microscopy‐based scoring, including a greater number of cells analyzed, much faster analysis times, and a greater degree of objectivity. Collectively, data presented in this report suggest that the overall performance of mouse peripheral blood micronucleus tests is enhanced by the use of the flow cytometric scoring procedure. Environ. Mol. Mutagen., 2005. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15605355</pmid><doi>10.1002/em.20081</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6692
ispartof Environmental and molecular mutagenesis, 2005, Vol.45 (1), p.44-55
issn 0893-6692
1098-2280
language eng
recordid cdi_proquest_miscellaneous_20379682
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Antigens, CD
Antigens, Differentiation, B-Lymphocyte
Benzo(a)pyrene - toxicity
Biological and medical sciences
CD71
Cyclophosphamide - toxicity
Dose-Response Relationship, Drug
flow cytometry
Flow Cytometry - methods
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
interlaboratory
Male
Medical sciences
Methotrexate - toxicity
Mice
micronuclei
Micronucleus Tests - methods
Mutagens - toxicity
Receptors, Transferrin
Reticulocytes
Toxicology
validation
Vincristine - toxicity
title Interlaboratory validation of a CD71-based flow cytometric method (Microflow®) for the scoring of micronucleated reticulocytes in mouse peripheral blood
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interlaboratory%20validation%20of%20a%20CD71-based%20flow%20cytometric%20method%20(Microflow%C2%AE)%20for%20the%20scoring%20of%20micronucleated%20reticulocytes%20in%20mouse%20peripheral%20blood&rft.jtitle=Environmental%20and%20molecular%20mutagenesis&rft.au=Torous,%20Dorothea%20K.&rft.date=2005&rft.volume=45&rft.issue=1&rft.spage=44&rft.epage=55&rft.pages=44-55&rft.issn=0893-6692&rft.eissn=1098-2280&rft.coden=EMMUEG&rft_id=info:doi/10.1002/em.20081&rft_dat=%3Cproquest_pubme%3E20379682%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20379682&rft_id=info:pmid/15605355&rfr_iscdi=true