HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earth’s HFSE budget

The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2009-01, Vol.73 (2), p.455-468
Hauptverfasser: Schmidt, Alexander, Weyer, Stefan, John, Timm, Brey, Gerhard P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 2
container_start_page 455
container_title Geochimica et cosmochimica acta
container_volume 73
creator Schmidt, Alexander
Weyer, Stefan
John, Timm
Brey, Gerhard P.
description The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to contradict this mass balance. All reservoirs of the silicate Earth exhibit subchondritic Nb/Ta ratios, possibly as a result of Nb depletion. In this study a series of nineteen orogenic MORB-type eclogites from different localities was analyzed to determine their HFSE concentrations and to contribute to the question of whether subducted oceanic crust could form a hidden reservoir to account for the mass imbalance of Nb/Ta between BSE and the chondritic reservoir. Concentrations of HFSE were analyzed with isotope dilution (ID) techniques. Additionally, LA-ICPMS analyses of clinopyroxene, garnet and rutile have been performed. Rutile is by far the major host for Nb and Ta in all analyzed eclogites. However, many rutiles revealed zoning in Nb/Ta ratios, with cores being higher than rims. Accordingly, in situ analyses of rutiles have to be evaluated carefully and rutile cores do not necessarily reflect a bulk rock Nb and Ta composition, although over 90% of these elements reside in rutile. The HFSE concentration data in bulk rocks show that the orogenic eclogites have subchondritic Nb/Ta ratios and near chondritic Zr/Hf ratios. The investigated eclogites show neither enrichment of Nb compared to similarly incompatible elements (e.g. La), nor fractionation of Nb/Ta ratios relative to MOR-basalts, the likely precursor of these rocks. This indicates that during the conversion of the oceanic crust to eclogites in most cases, (1) HFSE and REE have similar mobility on average, possibly because both element groups remain in the down going slab, and (2) no significant fractionation of Nb/Ta occurs in subducted oceanic crust. With an average Nb/Ta ratio of 14.2 ± 1.4 (2s.e.), the investigated eclogites cannot balance the differences between BSE and chondrite. Additionally, as their average Nb/Ta is indistinguishable from the Nb/Ta of MORB, they are also an unlikely candidate to balance the potentially small differences in Nb/Ta between the continental crust and the mantle.
doi_str_mv 10.1016/j.gca.2008.10.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20368612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703708006406</els_id><sourcerecordid>20368612</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-e4aeeb70067bb3253830b1db5744741ce687b580afc7d8c859d8e13140b746653</originalsourceid><addsrcrecordid>eNp9UD2P1DAQtRBILAc_gM4VXZZxHMc-qNDpjkM6QQHUlu1Msl5l48XjgI6Kkr_A3-OX4GWpqebrvTczj7HnArYCRP9yv52C27YAptZbaM0DthFGt82lkvIh20AFNRqkfsyeEO0BQCsFG_bz9ubjNad7KnhwJQbiaeR5LXHGxqPLcZk4hjlNsSC94u_xG48LxWlXqCYlcVr9sIYS08K_pwX5MaeAREjcLQOPh-McgzuNiY8p87JDXmXL7vePX8T_LvfrMGF5yh6NbiZ89i9esM8315-ubpu7D2_fXb25a5xUojTYOUSvAXrtvWyVNBK8GLzSXac7EbA32isDbgx6MMGoy8GgkKIDr7u-V_KCvTjr1kO_rEjFHiIFnGe3YFrJtiB704u2AsUZGHIiyjjaY44Hl--tAHvy3O5t9dyePD-1queV8_rMwfrB14jZUoi4BBxixlDskOJ_2H8ADPyMWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20368612</pqid></control><display><type>article</type><title>HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earth’s HFSE budget</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Schmidt, Alexander ; Weyer, Stefan ; John, Timm ; Brey, Gerhard P.</creator><creatorcontrib>Schmidt, Alexander ; Weyer, Stefan ; John, Timm ; Brey, Gerhard P.</creatorcontrib><description>The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to contradict this mass balance. All reservoirs of the silicate Earth exhibit subchondritic Nb/Ta ratios, possibly as a result of Nb depletion. In this study a series of nineteen orogenic MORB-type eclogites from different localities was analyzed to determine their HFSE concentrations and to contribute to the question of whether subducted oceanic crust could form a hidden reservoir to account for the mass imbalance of Nb/Ta between BSE and the chondritic reservoir. Concentrations of HFSE were analyzed with isotope dilution (ID) techniques. Additionally, LA-ICPMS analyses of clinopyroxene, garnet and rutile have been performed. Rutile is by far the major host for Nb and Ta in all analyzed eclogites. However, many rutiles revealed zoning in Nb/Ta ratios, with cores being higher than rims. Accordingly, in situ analyses of rutiles have to be evaluated carefully and rutile cores do not necessarily reflect a bulk rock Nb and Ta composition, although over 90% of these elements reside in rutile. The HFSE concentration data in bulk rocks show that the orogenic eclogites have subchondritic Nb/Ta ratios and near chondritic Zr/Hf ratios. The investigated eclogites show neither enrichment of Nb compared to similarly incompatible elements (e.g. La), nor fractionation of Nb/Ta ratios relative to MOR-basalts, the likely precursor of these rocks. This indicates that during the conversion of the oceanic crust to eclogites in most cases, (1) HFSE and REE have similar mobility on average, possibly because both element groups remain in the down going slab, and (2) no significant fractionation of Nb/Ta occurs in subducted oceanic crust. With an average Nb/Ta ratio of 14.2 ± 1.4 (2s.e.), the investigated eclogites cannot balance the differences between BSE and chondrite. Additionally, as their average Nb/Ta is indistinguishable from the Nb/Ta of MORB, they are also an unlikely candidate to balance the potentially small differences in Nb/Ta between the continental crust and the mantle.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2008.10.028</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chondrites ; Marine</subject><ispartof>Geochimica et cosmochimica acta, 2009-01, Vol.73 (2), p.455-468</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-e4aeeb70067bb3253830b1db5744741ce687b580afc7d8c859d8e13140b746653</citedby><cites>FETCH-LOGICAL-a351t-e4aeeb70067bb3253830b1db5744741ce687b580afc7d8c859d8e13140b746653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gca.2008.10.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Schmidt, Alexander</creatorcontrib><creatorcontrib>Weyer, Stefan</creatorcontrib><creatorcontrib>John, Timm</creatorcontrib><creatorcontrib>Brey, Gerhard P.</creatorcontrib><title>HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earth’s HFSE budget</title><title>Geochimica et cosmochimica acta</title><description>The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to contradict this mass balance. All reservoirs of the silicate Earth exhibit subchondritic Nb/Ta ratios, possibly as a result of Nb depletion. In this study a series of nineteen orogenic MORB-type eclogites from different localities was analyzed to determine their HFSE concentrations and to contribute to the question of whether subducted oceanic crust could form a hidden reservoir to account for the mass imbalance of Nb/Ta between BSE and the chondritic reservoir. Concentrations of HFSE were analyzed with isotope dilution (ID) techniques. Additionally, LA-ICPMS analyses of clinopyroxene, garnet and rutile have been performed. Rutile is by far the major host for Nb and Ta in all analyzed eclogites. However, many rutiles revealed zoning in Nb/Ta ratios, with cores being higher than rims. Accordingly, in situ analyses of rutiles have to be evaluated carefully and rutile cores do not necessarily reflect a bulk rock Nb and Ta composition, although over 90% of these elements reside in rutile. The HFSE concentration data in bulk rocks show that the orogenic eclogites have subchondritic Nb/Ta ratios and near chondritic Zr/Hf ratios. The investigated eclogites show neither enrichment of Nb compared to similarly incompatible elements (e.g. La), nor fractionation of Nb/Ta ratios relative to MOR-basalts, the likely precursor of these rocks. This indicates that during the conversion of the oceanic crust to eclogites in most cases, (1) HFSE and REE have similar mobility on average, possibly because both element groups remain in the down going slab, and (2) no significant fractionation of Nb/Ta occurs in subducted oceanic crust. With an average Nb/Ta ratio of 14.2 ± 1.4 (2s.e.), the investigated eclogites cannot balance the differences between BSE and chondrite. Additionally, as their average Nb/Ta is indistinguishable from the Nb/Ta of MORB, they are also an unlikely candidate to balance the potentially small differences in Nb/Ta between the continental crust and the mantle.</description><subject>Chondrites</subject><subject>Marine</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UD2P1DAQtRBILAc_gM4VXZZxHMc-qNDpjkM6QQHUlu1Msl5l48XjgI6Kkr_A3-OX4GWpqebrvTczj7HnArYCRP9yv52C27YAptZbaM0DthFGt82lkvIh20AFNRqkfsyeEO0BQCsFG_bz9ubjNad7KnhwJQbiaeR5LXHGxqPLcZk4hjlNsSC94u_xG48LxWlXqCYlcVr9sIYS08K_pwX5MaeAREjcLQOPh-McgzuNiY8p87JDXmXL7vePX8T_LvfrMGF5yh6NbiZ89i9esM8315-ubpu7D2_fXb25a5xUojTYOUSvAXrtvWyVNBK8GLzSXac7EbA32isDbgx6MMGoy8GgkKIDr7u-V_KCvTjr1kO_rEjFHiIFnGe3YFrJtiB704u2AsUZGHIiyjjaY44Hl--tAHvy3O5t9dyePD-1queV8_rMwfrB14jZUoi4BBxixlDskOJ_2H8ADPyMWA</recordid><startdate>20090115</startdate><enddate>20090115</enddate><creator>Schmidt, Alexander</creator><creator>Weyer, Stefan</creator><creator>John, Timm</creator><creator>Brey, Gerhard P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20090115</creationdate><title>HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earth’s HFSE budget</title><author>Schmidt, Alexander ; Weyer, Stefan ; John, Timm ; Brey, Gerhard P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-e4aeeb70067bb3253830b1db5744741ce687b580afc7d8c859d8e13140b746653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chondrites</topic><topic>Marine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Alexander</creatorcontrib><creatorcontrib>Weyer, Stefan</creatorcontrib><creatorcontrib>John, Timm</creatorcontrib><creatorcontrib>Brey, Gerhard P.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Alexander</au><au>Weyer, Stefan</au><au>John, Timm</au><au>Brey, Gerhard P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earth’s HFSE budget</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2009-01-15</date><risdate>2009</risdate><volume>73</volume><issue>2</issue><spage>455</spage><epage>468</epage><pages>455-468</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to contradict this mass balance. All reservoirs of the silicate Earth exhibit subchondritic Nb/Ta ratios, possibly as a result of Nb depletion. In this study a series of nineteen orogenic MORB-type eclogites from different localities was analyzed to determine their HFSE concentrations and to contribute to the question of whether subducted oceanic crust could form a hidden reservoir to account for the mass imbalance of Nb/Ta between BSE and the chondritic reservoir. Concentrations of HFSE were analyzed with isotope dilution (ID) techniques. Additionally, LA-ICPMS analyses of clinopyroxene, garnet and rutile have been performed. Rutile is by far the major host for Nb and Ta in all analyzed eclogites. However, many rutiles revealed zoning in Nb/Ta ratios, with cores being higher than rims. Accordingly, in situ analyses of rutiles have to be evaluated carefully and rutile cores do not necessarily reflect a bulk rock Nb and Ta composition, although over 90% of these elements reside in rutile. The HFSE concentration data in bulk rocks show that the orogenic eclogites have subchondritic Nb/Ta ratios and near chondritic Zr/Hf ratios. The investigated eclogites show neither enrichment of Nb compared to similarly incompatible elements (e.g. La), nor fractionation of Nb/Ta ratios relative to MOR-basalts, the likely precursor of these rocks. This indicates that during the conversion of the oceanic crust to eclogites in most cases, (1) HFSE and REE have similar mobility on average, possibly because both element groups remain in the down going slab, and (2) no significant fractionation of Nb/Ta occurs in subducted oceanic crust. With an average Nb/Ta ratio of 14.2 ± 1.4 (2s.e.), the investigated eclogites cannot balance the differences between BSE and chondrite. Additionally, as their average Nb/Ta is indistinguishable from the Nb/Ta of MORB, they are also an unlikely candidate to balance the potentially small differences in Nb/Ta between the continental crust and the mantle.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2008.10.028</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2009-01, Vol.73 (2), p.455-468
issn 0016-7037
1872-9533
language eng
recordid cdi_proquest_miscellaneous_20368612
source Elsevier ScienceDirect Journals Complete
subjects Chondrites
Marine
title HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earth’s HFSE budget
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HFSE%20systematics%20of%20rutile-bearing%20eclogites:%20New%20insights%20into%20subduction%20zone%20processes%20and%20implications%20for%20the%20earth%E2%80%99s%20HFSE%20budget&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Schmidt,%20Alexander&rft.date=2009-01-15&rft.volume=73&rft.issue=2&rft.spage=455&rft.epage=468&rft.pages=455-468&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2008.10.028&rft_dat=%3Cproquest_cross%3E20368612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20368612&rft_id=info:pmid/&rft_els_id=S0016703708006406&rfr_iscdi=true