A non-equilibrium approach to allosteric communication

While the theory of protein folding is well developed, including concepts such as rugged energy landscape, folding funnel, etc., the same degree of understanding has not been reached for the description of the dynamics of allosteric transitions in proteins. This is not only due to the small size of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2018-06, Vol.373 (1749), p.20170187-20170187
Hauptverfasser: Stock, Gerhard, Hamm, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20170187
container_issue 1749
container_start_page 20170187
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 373
creator Stock, Gerhard
Hamm, Peter
description While the theory of protein folding is well developed, including concepts such as rugged energy landscape, folding funnel, etc., the same degree of understanding has not been reached for the description of the dynamics of allosteric transitions in proteins. This is not only due to the small size of the structural change upon ligand binding to an allosteric site, but also due to challenges in designing experiments that directly observe such an allosteric transition. On the basis of recent pump-probe-type experiments (Buchli et al. 2013 Proc. Natl Acad. Sci. USA 110, 11 725–11 730. (doi:10.1073/pnas.1306323110)) and non-equilibrium molecular dynamics simulations (Buchenberg et al. 2017 Proc. Natl Acad. Sci. USA 114, E6804–E6811. (doi:10.1073/pnas.1707694114)) studying an photoswitchable PDZ2 domain as model for an allosteric transition, we outline in this perspective how such a description of allosteric communication might look. That is, calculating the dynamical content of both experiment and simulation (which agree remarkably well with each other), we find that allosteric communication shares some properties with downhill folding, except that it is an ‘order–order’ transition. Discussing the multiscale and hierarchical features of the dynamics, the validity of linear response theory as well as the meaning of ‘allosteric pathways’, we conclude that non-equilibrium experiments and simulations are a promising way to study dynamical aspects of allostery. This article is part of a discussion meeting issue ‘Allostery and molecular machines’.
doi_str_mv 10.1098/rstb.2017.0187
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_miscellaneous_2036203327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035634451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-47c54bafc2652fe4fb8765fd089bc20d21eb165de4bf3c8055cd0fc51dc49c203</originalsourceid><addsrcrecordid>eNp9kc1PFTEUxRuigQeyZWkmccNmnrffnY0JEFETEhPEddPpdKQ4Mx3aGZLHX2_HBygaXTRtcn49594chI4wrDFU6m1MU70mgOUasJI7aIWZxCWpJLxAK6gEKRWjYg_tp3QDABWXbBftZZ3mF6yQOCmGMJTudvadr6Of-8KMYwzGXhdTKEzXhTS56G1hQ9_Pg7dm8mF4hV62pkvu8OE-QF_P31-dfSwvPn_4dHZyUVpB1FQyaTmrTWuJ4KR1rK2VFLxtQFW1JdAQ7GoseONY3VKrgHPbQGs5biyrMkAP0Lut7zjXvWusG6ZoOj1G35u40cF4_VwZ_LX-Fu40rxjGCmeD4weDGG5nlybd-2Rd15nBhTnpnCHyoURm9M0f6E2Y45DXWyguKGN8MVxvKRtDStG1T8Ng0EsleqlEL5XopZL84fXvKzzhjx1k4PsWiGGTw4L1btr8yr78cnV6RyX1WLJKg6IYJFGY63s_brOyqH1Ks9M_kef5f49D_5f2jyV-ABXnvQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035634451</pqid></control><display><type>article</type><title>A non-equilibrium approach to allosteric communication</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><creator>Stock, Gerhard ; Hamm, Peter</creator><creatorcontrib>Stock, Gerhard ; Hamm, Peter</creatorcontrib><description>While the theory of protein folding is well developed, including concepts such as rugged energy landscape, folding funnel, etc., the same degree of understanding has not been reached for the description of the dynamics of allosteric transitions in proteins. This is not only due to the small size of the structural change upon ligand binding to an allosteric site, but also due to challenges in designing experiments that directly observe such an allosteric transition. On the basis of recent pump-probe-type experiments (Buchli et al. 2013 Proc. Natl Acad. Sci. USA 110, 11 725–11 730. (doi:10.1073/pnas.1306323110)) and non-equilibrium molecular dynamics simulations (Buchenberg et al. 2017 Proc. Natl Acad. Sci. USA 114, E6804–E6811. (doi:10.1073/pnas.1707694114)) studying an photoswitchable PDZ2 domain as model for an allosteric transition, we outline in this perspective how such a description of allosteric communication might look. That is, calculating the dynamical content of both experiment and simulation (which agree remarkably well with each other), we find that allosteric communication shares some properties with downhill folding, except that it is an ‘order–order’ transition. Discussing the multiscale and hierarchical features of the dynamics, the validity of linear response theory as well as the meaning of ‘allosteric pathways’, we conclude that non-equilibrium experiments and simulations are a promising way to study dynamical aspects of allostery. This article is part of a discussion meeting issue ‘Allostery and molecular machines’.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2017.0187</identifier><identifier>PMID: 29735740</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Allosteric properties ; Allosteric Regulation ; Allosteric Transition ; Communication ; Computer simulation ; Downhill Folding ; Dynamic Content ; Equilibrium ; Experiments ; Folding ; Free-Energy Landscape ; Models, Molecular ; Molecular chains ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular machines ; Non-Equilibrium Molecular Dynamics Simulations ; Opinion Piece ; Protein Folding ; Protein Interaction Maps ; Proteins ; Proteins - chemistry ; Time-Resolved Vibrational Spectroscopy</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2018-06, Vol.373 (1749), p.20170187-20170187</ispartof><rights>2018 The Author(s)</rights><rights>2018 The Author(s).</rights><rights>Copyright The Royal Society Publishing Jun 19, 2018</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-47c54bafc2652fe4fb8765fd089bc20d21eb165de4bf3c8055cd0fc51dc49c203</citedby><cites>FETCH-LOGICAL-c628t-47c54bafc2652fe4fb8765fd089bc20d21eb165de4bf3c8055cd0fc51dc49c203</cites><orcidid>0000-0003-1106-6032 ; 0000-0002-3302-3044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941181/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941181/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29735740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stock, Gerhard</creatorcontrib><creatorcontrib>Hamm, Peter</creatorcontrib><title>A non-equilibrium approach to allosteric communication</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. B</addtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>While the theory of protein folding is well developed, including concepts such as rugged energy landscape, folding funnel, etc., the same degree of understanding has not been reached for the description of the dynamics of allosteric transitions in proteins. This is not only due to the small size of the structural change upon ligand binding to an allosteric site, but also due to challenges in designing experiments that directly observe such an allosteric transition. On the basis of recent pump-probe-type experiments (Buchli et al. 2013 Proc. Natl Acad. Sci. USA 110, 11 725–11 730. (doi:10.1073/pnas.1306323110)) and non-equilibrium molecular dynamics simulations (Buchenberg et al. 2017 Proc. Natl Acad. Sci. USA 114, E6804–E6811. (doi:10.1073/pnas.1707694114)) studying an photoswitchable PDZ2 domain as model for an allosteric transition, we outline in this perspective how such a description of allosteric communication might look. That is, calculating the dynamical content of both experiment and simulation (which agree remarkably well with each other), we find that allosteric communication shares some properties with downhill folding, except that it is an ‘order–order’ transition. Discussing the multiscale and hierarchical features of the dynamics, the validity of linear response theory as well as the meaning of ‘allosteric pathways’, we conclude that non-equilibrium experiments and simulations are a promising way to study dynamical aspects of allostery. This article is part of a discussion meeting issue ‘Allostery and molecular machines’.</description><subject>Allosteric properties</subject><subject>Allosteric Regulation</subject><subject>Allosteric Transition</subject><subject>Communication</subject><subject>Computer simulation</subject><subject>Downhill Folding</subject><subject>Dynamic Content</subject><subject>Equilibrium</subject><subject>Experiments</subject><subject>Folding</subject><subject>Free-Energy Landscape</subject><subject>Models, Molecular</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular machines</subject><subject>Non-Equilibrium Molecular Dynamics Simulations</subject><subject>Opinion Piece</subject><subject>Protein Folding</subject><subject>Protein Interaction Maps</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Time-Resolved Vibrational Spectroscopy</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1PFTEUxRuigQeyZWkmccNmnrffnY0JEFETEhPEddPpdKQ4Mx3aGZLHX2_HBygaXTRtcn49594chI4wrDFU6m1MU70mgOUasJI7aIWZxCWpJLxAK6gEKRWjYg_tp3QDABWXbBftZZ3mF6yQOCmGMJTudvadr6Of-8KMYwzGXhdTKEzXhTS56G1hQ9_Pg7dm8mF4hV62pkvu8OE-QF_P31-dfSwvPn_4dHZyUVpB1FQyaTmrTWuJ4KR1rK2VFLxtQFW1JdAQ7GoseONY3VKrgHPbQGs5biyrMkAP0Lut7zjXvWusG6ZoOj1G35u40cF4_VwZ_LX-Fu40rxjGCmeD4weDGG5nlybd-2Rd15nBhTnpnCHyoURm9M0f6E2Y45DXWyguKGN8MVxvKRtDStG1T8Ng0EsleqlEL5XopZL84fXvKzzhjx1k4PsWiGGTw4L1btr8yr78cnV6RyX1WLJKg6IYJFGY63s_brOyqH1Ks9M_kef5f49D_5f2jyV-ABXnvQQ</recordid><startdate>20180619</startdate><enddate>20180619</enddate><creator>Stock, Gerhard</creator><creator>Hamm, Peter</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1106-6032</orcidid><orcidid>https://orcid.org/0000-0002-3302-3044</orcidid></search><sort><creationdate>20180619</creationdate><title>A non-equilibrium approach to allosteric communication</title><author>Stock, Gerhard ; Hamm, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-47c54bafc2652fe4fb8765fd089bc20d21eb165de4bf3c8055cd0fc51dc49c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Allosteric properties</topic><topic>Allosteric Regulation</topic><topic>Allosteric Transition</topic><topic>Communication</topic><topic>Computer simulation</topic><topic>Downhill Folding</topic><topic>Dynamic Content</topic><topic>Equilibrium</topic><topic>Experiments</topic><topic>Folding</topic><topic>Free-Energy Landscape</topic><topic>Models, Molecular</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular machines</topic><topic>Non-Equilibrium Molecular Dynamics Simulations</topic><topic>Opinion Piece</topic><topic>Protein Folding</topic><topic>Protein Interaction Maps</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Time-Resolved Vibrational Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stock, Gerhard</creatorcontrib><creatorcontrib>Hamm, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stock, Gerhard</au><au>Hamm, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non-equilibrium approach to allosteric communication</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. B</stitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2018-06-19</date><risdate>2018</risdate><volume>373</volume><issue>1749</issue><spage>20170187</spage><epage>20170187</epage><pages>20170187-20170187</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>While the theory of protein folding is well developed, including concepts such as rugged energy landscape, folding funnel, etc., the same degree of understanding has not been reached for the description of the dynamics of allosteric transitions in proteins. This is not only due to the small size of the structural change upon ligand binding to an allosteric site, but also due to challenges in designing experiments that directly observe such an allosteric transition. On the basis of recent pump-probe-type experiments (Buchli et al. 2013 Proc. Natl Acad. Sci. USA 110, 11 725–11 730. (doi:10.1073/pnas.1306323110)) and non-equilibrium molecular dynamics simulations (Buchenberg et al. 2017 Proc. Natl Acad. Sci. USA 114, E6804–E6811. (doi:10.1073/pnas.1707694114)) studying an photoswitchable PDZ2 domain as model for an allosteric transition, we outline in this perspective how such a description of allosteric communication might look. That is, calculating the dynamical content of both experiment and simulation (which agree remarkably well with each other), we find that allosteric communication shares some properties with downhill folding, except that it is an ‘order–order’ transition. Discussing the multiscale and hierarchical features of the dynamics, the validity of linear response theory as well as the meaning of ‘allosteric pathways’, we conclude that non-equilibrium experiments and simulations are a promising way to study dynamical aspects of allostery. This article is part of a discussion meeting issue ‘Allostery and molecular machines’.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>29735740</pmid><doi>10.1098/rstb.2017.0187</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1106-6032</orcidid><orcidid>https://orcid.org/0000-0002-3302-3044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2018-06, Vol.373 (1749), p.20170187-20170187
issn 0962-8436
1471-2970
language eng
recordid cdi_proquest_miscellaneous_2036203327
source MEDLINE; Jstor Complete Legacy; PubMed Central
subjects Allosteric properties
Allosteric Regulation
Allosteric Transition
Communication
Computer simulation
Downhill Folding
Dynamic Content
Equilibrium
Experiments
Folding
Free-Energy Landscape
Models, Molecular
Molecular chains
Molecular dynamics
Molecular Dynamics Simulation
Molecular machines
Non-Equilibrium Molecular Dynamics Simulations
Opinion Piece
Protein Folding
Protein Interaction Maps
Proteins
Proteins - chemistry
Time-Resolved Vibrational Spectroscopy
title A non-equilibrium approach to allosteric communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non-equilibrium%20approach%20to%20allosteric%20communication&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Stock,%20Gerhard&rft.date=2018-06-19&rft.volume=373&rft.issue=1749&rft.spage=20170187&rft.epage=20170187&rft.pages=20170187-20170187&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2017.0187&rft_dat=%3Cproquest_royal%3E2035634451%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2035634451&rft_id=info:pmid/29735740&rfr_iscdi=true