8‑Layer Shifted Hexagonal Perovskite Ba8MnNb6O24: Long-Range Ordering of High-Spin d5 Mn2+ Layers and Electronic Structure

A new 8-layer shifted hexagonal perovskite Ba8MnNb6O24 has been synthesized in air, featuring unusual long-range B-cation ordering with single octahedral high-spin d5 Mn2+ layers separated by ∼1.9 nm within the corner-sharing octahedral d0 Nb5+ host, analogous to Ba8(Zn/Co)­Nb6O24. The large size an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2018-05, Vol.57 (10), p.5732-5742
Hauptverfasser: Tao, Fengqiong, Liang, Chaoping, Wang, Xiaoming, Li, Xiaohui, Porcher, Florence, Allix, Mathieu, Lu, Fengqi, Gong, Haoran, Liu, Laijun, Kuang, Xiaojun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5742
container_issue 10
container_start_page 5732
container_title Inorganic chemistry
container_volume 57
creator Tao, Fengqiong
Liang, Chaoping
Wang, Xiaoming
Li, Xiaohui
Porcher, Florence
Allix, Mathieu
Lu, Fengqi
Gong, Haoran
Liu, Laijun
Kuang, Xiaojun
description A new 8-layer shifted hexagonal perovskite Ba8MnNb6O24 has been synthesized in air, featuring unusual long-range B-cation ordering with single octahedral high-spin d5 Mn2+ layers separated by ∼1.9 nm within the corner-sharing octahedral d0 Nb5+ host, analogous to Ba8(Zn/Co)­Nb6O24. The large size and charge differences between high-spin Mn2+ and Nb5+, as well as the out-of-center distortion of NbO6 octahedra associated with the bonding covalence and second-order Jahn–Teller effect of Nb5+, drive long-range cationic ordering, thus stabilizing Ba8MnNb6O24. The Ba8MnNb6O24 pellet exhibits a high dielectric permittivity, εr ∼ 38, and a large temperature coefficient of resonant frequency, τf ∼ 20 ppm/K, but a dielectric loss (Qf ∼ 987 GHz) and conductivity (∼10–8–10–3 S/cm within 473–1173 K) much higher than those of Ba8ZnNb6O24. Electronic structures from density functional theory calculations reveal that Ba8MnNb6O24 is a Mott insulator in contrast with the charge-transfer insulator nature of Ba8ZnNb6O24, and they confirm that the off-center distortion of Nb5+ contributes to stabilization of the 8-layer ordered shifted structure. The contrast between conductivity and dielectric loss of Ba8MnNb6O24 and Ba8ZnNb6O24 is understood based on the electronic structure that depends on high-spin d5 Mn2+ and d10 Zn2+ cations. The hopping of 3d valence electrons in high-spin Mn2+ to Nb5+ 4d conduction bands over a small gap (∼2.0 eV) makes Ba8MnNb6O24 more conductive than Ba8ZnNb6O24, where the electrons are conducted via the hopping of a lattice O 2p valence electron to the Nb5+ 4d conduction bands over a larger gap (∼3.9 eV). The high microwave dielectric loss of BMN may be mainly ascribed to the half-filled Mn 3d orbits, which is understood based on the softened infrared modes that increase the lattice vibration anharmonicity as well as the resonant spin excitation of unpaired d electrons.
doi_str_mv 10.1021/acs.inorgchem.7b03023
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2036197058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036197058</sourcerecordid><originalsourceid>FETCH-LOGICAL-a160t-1450d5793eadfab2b560c7d6a6abadde982b792d9ee878aee361de7c2602eb143</originalsourceid><addsrcrecordid>eNo90MFKw0AQBuBFFKzVRxD2KEjq7CbZJN60VCukVqyCt7DJTtPUdLfuJqLgwVfwFX0SUy2eZhj--Q8fIccMBgw4O5OFG1Ta2LJY4GoQ5eAD93dIj4UcvJDB0y7pAXQ7EyLZJwfOLQEg8QPRIx_x9-dXKt_R0tmimjeo6BjfZGm0rOkdWvPqnqsG6aWMJ_o2F1MenNPU6NK7l7pEOrUKbaVLauZ0XJULb7auNFUhnWh-Sn-LHZVa0VGNRWONrgo6a2xbNK3FQ7I3l7XDo-3sk8er0cNw7KXT65vhRepJJqDxWBCCCqPER6nmMud5KKCIlJBC5lIpTGKeRwlXCWIcxRLRF0xhVHABHHMW-H1y8te7tualRddkq8oVWNdSo2ldxqH7SCII4y7K_qIdarY0re0cXMYg20hnm-O_dLaV9n8AErV2ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036197058</pqid></control><display><type>article</type><title>8‑Layer Shifted Hexagonal Perovskite Ba8MnNb6O24: Long-Range Ordering of High-Spin d5 Mn2+ Layers and Electronic Structure</title><source>American Chemical Society Journals</source><creator>Tao, Fengqiong ; Liang, Chaoping ; Wang, Xiaoming ; Li, Xiaohui ; Porcher, Florence ; Allix, Mathieu ; Lu, Fengqi ; Gong, Haoran ; Liu, Laijun ; Kuang, Xiaojun</creator><creatorcontrib>Tao, Fengqiong ; Liang, Chaoping ; Wang, Xiaoming ; Li, Xiaohui ; Porcher, Florence ; Allix, Mathieu ; Lu, Fengqi ; Gong, Haoran ; Liu, Laijun ; Kuang, Xiaojun</creatorcontrib><description>A new 8-layer shifted hexagonal perovskite Ba8MnNb6O24 has been synthesized in air, featuring unusual long-range B-cation ordering with single octahedral high-spin d5 Mn2+ layers separated by ∼1.9 nm within the corner-sharing octahedral d0 Nb5+ host, analogous to Ba8(Zn/Co)­Nb6O24. The large size and charge differences between high-spin Mn2+ and Nb5+, as well as the out-of-center distortion of NbO6 octahedra associated with the bonding covalence and second-order Jahn–Teller effect of Nb5+, drive long-range cationic ordering, thus stabilizing Ba8MnNb6O24. The Ba8MnNb6O24 pellet exhibits a high dielectric permittivity, εr ∼ 38, and a large temperature coefficient of resonant frequency, τf ∼ 20 ppm/K, but a dielectric loss (Qf ∼ 987 GHz) and conductivity (∼10–8–10–3 S/cm within 473–1173 K) much higher than those of Ba8ZnNb6O24. Electronic structures from density functional theory calculations reveal that Ba8MnNb6O24 is a Mott insulator in contrast with the charge-transfer insulator nature of Ba8ZnNb6O24, and they confirm that the off-center distortion of Nb5+ contributes to stabilization of the 8-layer ordered shifted structure. The contrast between conductivity and dielectric loss of Ba8MnNb6O24 and Ba8ZnNb6O24 is understood based on the electronic structure that depends on high-spin d5 Mn2+ and d10 Zn2+ cations. The hopping of 3d valence electrons in high-spin Mn2+ to Nb5+ 4d conduction bands over a small gap (∼2.0 eV) makes Ba8MnNb6O24 more conductive than Ba8ZnNb6O24, where the electrons are conducted via the hopping of a lattice O 2p valence electron to the Nb5+ 4d conduction bands over a larger gap (∼3.9 eV). The high microwave dielectric loss of BMN may be mainly ascribed to the half-filled Mn 3d orbits, which is understood based on the softened infrared modes that increase the lattice vibration anharmonicity as well as the resonant spin excitation of unpaired d electrons.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.7b03023</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Inorganic chemistry, 2018-05, Vol.57 (10), p.5732-5742</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1527-3496 ; 0000-0003-2975-9355 ; 0000-0001-9317-1316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b03023$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.7b03023$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Tao, Fengqiong</creatorcontrib><creatorcontrib>Liang, Chaoping</creatorcontrib><creatorcontrib>Wang, Xiaoming</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Porcher, Florence</creatorcontrib><creatorcontrib>Allix, Mathieu</creatorcontrib><creatorcontrib>Lu, Fengqi</creatorcontrib><creatorcontrib>Gong, Haoran</creatorcontrib><creatorcontrib>Liu, Laijun</creatorcontrib><creatorcontrib>Kuang, Xiaojun</creatorcontrib><title>8‑Layer Shifted Hexagonal Perovskite Ba8MnNb6O24: Long-Range Ordering of High-Spin d5 Mn2+ Layers and Electronic Structure</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>A new 8-layer shifted hexagonal perovskite Ba8MnNb6O24 has been synthesized in air, featuring unusual long-range B-cation ordering with single octahedral high-spin d5 Mn2+ layers separated by ∼1.9 nm within the corner-sharing octahedral d0 Nb5+ host, analogous to Ba8(Zn/Co)­Nb6O24. The large size and charge differences between high-spin Mn2+ and Nb5+, as well as the out-of-center distortion of NbO6 octahedra associated with the bonding covalence and second-order Jahn–Teller effect of Nb5+, drive long-range cationic ordering, thus stabilizing Ba8MnNb6O24. The Ba8MnNb6O24 pellet exhibits a high dielectric permittivity, εr ∼ 38, and a large temperature coefficient of resonant frequency, τf ∼ 20 ppm/K, but a dielectric loss (Qf ∼ 987 GHz) and conductivity (∼10–8–10–3 S/cm within 473–1173 K) much higher than those of Ba8ZnNb6O24. Electronic structures from density functional theory calculations reveal that Ba8MnNb6O24 is a Mott insulator in contrast with the charge-transfer insulator nature of Ba8ZnNb6O24, and they confirm that the off-center distortion of Nb5+ contributes to stabilization of the 8-layer ordered shifted structure. The contrast between conductivity and dielectric loss of Ba8MnNb6O24 and Ba8ZnNb6O24 is understood based on the electronic structure that depends on high-spin d5 Mn2+ and d10 Zn2+ cations. The hopping of 3d valence electrons in high-spin Mn2+ to Nb5+ 4d conduction bands over a small gap (∼2.0 eV) makes Ba8MnNb6O24 more conductive than Ba8ZnNb6O24, where the electrons are conducted via the hopping of a lattice O 2p valence electron to the Nb5+ 4d conduction bands over a larger gap (∼3.9 eV). The high microwave dielectric loss of BMN may be mainly ascribed to the half-filled Mn 3d orbits, which is understood based on the softened infrared modes that increase the lattice vibration anharmonicity as well as the resonant spin excitation of unpaired d electrons.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo90MFKw0AQBuBFFKzVRxD2KEjq7CbZJN60VCukVqyCt7DJTtPUdLfuJqLgwVfwFX0SUy2eZhj--Q8fIccMBgw4O5OFG1Ta2LJY4GoQ5eAD93dIj4UcvJDB0y7pAXQ7EyLZJwfOLQEg8QPRIx_x9-dXKt_R0tmimjeo6BjfZGm0rOkdWvPqnqsG6aWMJ_o2F1MenNPU6NK7l7pEOrUKbaVLauZ0XJULb7auNFUhnWh-Sn-LHZVa0VGNRWONrgo6a2xbNK3FQ7I3l7XDo-3sk8er0cNw7KXT65vhRepJJqDxWBCCCqPER6nmMud5KKCIlJBC5lIpTGKeRwlXCWIcxRLRF0xhVHABHHMW-H1y8te7tualRddkq8oVWNdSo2ldxqH7SCII4y7K_qIdarY0re0cXMYg20hnm-O_dLaV9n8AErV2ew</recordid><startdate>20180521</startdate><enddate>20180521</enddate><creator>Tao, Fengqiong</creator><creator>Liang, Chaoping</creator><creator>Wang, Xiaoming</creator><creator>Li, Xiaohui</creator><creator>Porcher, Florence</creator><creator>Allix, Mathieu</creator><creator>Lu, Fengqi</creator><creator>Gong, Haoran</creator><creator>Liu, Laijun</creator><creator>Kuang, Xiaojun</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1527-3496</orcidid><orcidid>https://orcid.org/0000-0003-2975-9355</orcidid><orcidid>https://orcid.org/0000-0001-9317-1316</orcidid></search><sort><creationdate>20180521</creationdate><title>8‑Layer Shifted Hexagonal Perovskite Ba8MnNb6O24: Long-Range Ordering of High-Spin d5 Mn2+ Layers and Electronic Structure</title><author>Tao, Fengqiong ; Liang, Chaoping ; Wang, Xiaoming ; Li, Xiaohui ; Porcher, Florence ; Allix, Mathieu ; Lu, Fengqi ; Gong, Haoran ; Liu, Laijun ; Kuang, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a160t-1450d5793eadfab2b560c7d6a6abadde982b792d9ee878aee361de7c2602eb143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Fengqiong</creatorcontrib><creatorcontrib>Liang, Chaoping</creatorcontrib><creatorcontrib>Wang, Xiaoming</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Porcher, Florence</creatorcontrib><creatorcontrib>Allix, Mathieu</creatorcontrib><creatorcontrib>Lu, Fengqi</creatorcontrib><creatorcontrib>Gong, Haoran</creatorcontrib><creatorcontrib>Liu, Laijun</creatorcontrib><creatorcontrib>Kuang, Xiaojun</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Fengqiong</au><au>Liang, Chaoping</au><au>Wang, Xiaoming</au><au>Li, Xiaohui</au><au>Porcher, Florence</au><au>Allix, Mathieu</au><au>Lu, Fengqi</au><au>Gong, Haoran</au><au>Liu, Laijun</au><au>Kuang, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>8‑Layer Shifted Hexagonal Perovskite Ba8MnNb6O24: Long-Range Ordering of High-Spin d5 Mn2+ Layers and Electronic Structure</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2018-05-21</date><risdate>2018</risdate><volume>57</volume><issue>10</issue><spage>5732</spage><epage>5742</epage><pages>5732-5742</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>A new 8-layer shifted hexagonal perovskite Ba8MnNb6O24 has been synthesized in air, featuring unusual long-range B-cation ordering with single octahedral high-spin d5 Mn2+ layers separated by ∼1.9 nm within the corner-sharing octahedral d0 Nb5+ host, analogous to Ba8(Zn/Co)­Nb6O24. The large size and charge differences between high-spin Mn2+ and Nb5+, as well as the out-of-center distortion of NbO6 octahedra associated with the bonding covalence and second-order Jahn–Teller effect of Nb5+, drive long-range cationic ordering, thus stabilizing Ba8MnNb6O24. The Ba8MnNb6O24 pellet exhibits a high dielectric permittivity, εr ∼ 38, and a large temperature coefficient of resonant frequency, τf ∼ 20 ppm/K, but a dielectric loss (Qf ∼ 987 GHz) and conductivity (∼10–8–10–3 S/cm within 473–1173 K) much higher than those of Ba8ZnNb6O24. Electronic structures from density functional theory calculations reveal that Ba8MnNb6O24 is a Mott insulator in contrast with the charge-transfer insulator nature of Ba8ZnNb6O24, and they confirm that the off-center distortion of Nb5+ contributes to stabilization of the 8-layer ordered shifted structure. The contrast between conductivity and dielectric loss of Ba8MnNb6O24 and Ba8ZnNb6O24 is understood based on the electronic structure that depends on high-spin d5 Mn2+ and d10 Zn2+ cations. The hopping of 3d valence electrons in high-spin Mn2+ to Nb5+ 4d conduction bands over a small gap (∼2.0 eV) makes Ba8MnNb6O24 more conductive than Ba8ZnNb6O24, where the electrons are conducted via the hopping of a lattice O 2p valence electron to the Nb5+ 4d conduction bands over a larger gap (∼3.9 eV). The high microwave dielectric loss of BMN may be mainly ascribed to the half-filled Mn 3d orbits, which is understood based on the softened infrared modes that increase the lattice vibration anharmonicity as well as the resonant spin excitation of unpaired d electrons.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.inorgchem.7b03023</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1527-3496</orcidid><orcidid>https://orcid.org/0000-0003-2975-9355</orcidid><orcidid>https://orcid.org/0000-0001-9317-1316</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2018-05, Vol.57 (10), p.5732-5742
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2036197058
source American Chemical Society Journals
title 8‑Layer Shifted Hexagonal Perovskite Ba8MnNb6O24: Long-Range Ordering of High-Spin d5 Mn2+ Layers and Electronic Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=8%E2%80%91Layer%20Shifted%20Hexagonal%20Perovskite%20Ba8MnNb6O24:%20Long-Range%20Ordering%20of%20High-Spin%20d5%20Mn2+%20Layers%20and%20Electronic%20Structure&rft.jtitle=Inorganic%20chemistry&rft.au=Tao,%20Fengqiong&rft.date=2018-05-21&rft.volume=57&rft.issue=10&rft.spage=5732&rft.epage=5742&rft.pages=5732-5742&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.7b03023&rft_dat=%3Cproquest_acs_j%3E2036197058%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036197058&rft_id=info:pmid/&rfr_iscdi=true