Stormwater disinfection using electrochemical oxidation: A feasibility investigation

Electrochemical oxidation (ECO) has shown good potential for disinfection of wastewater discharges but has not been tested for stormwater. Due to far lower salinity and chloride levels present in stormwater than in wastewaters, the knowledge so far on the ECO disinfection performance cannot simply b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2018-09, Vol.140, p.301-310
Hauptverfasser: Feng, Wenjun, McCarthy, David T., Wang, Zhouyou, Zhang, Xiwang, Deletic, Ana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemical oxidation (ECO) has shown good potential for disinfection of wastewater discharges but has not been tested for stormwater. Due to far lower salinity and chloride levels present in stormwater than in wastewaters, the knowledge so far on the ECO disinfection performance cannot simply be used for stormwater applications. This paper presents the first study on the feasibility of ECO technology for disinfection of pre-treated stormwater. Disinfection performance of E. coli was tested using a dimensional stable anode (DSA) in a series of batch experiments with synthetic stormwater of ‘typical’ chemical and microbial composition. The results showed that effective disinfection could be achieved with very low energy consumption; e.g. the current density of 1.74 mA/cm2 achieved total disinfection in 1.3 min, using only 0.018 kWh per ton of stormwater treatment. Chlorination was found to be the key disinfection mechanism, despite the synthetic stormwater containing only 9 mg/L of chloride. Real stormwater collected from three stormwater treatment systems in Melbourne was then used to validate the findings for indigenous microbe species. Disinfection below the detection limit was achieved for stormwater from the two sites where chloride levels were 9 and 200 mg/l, respectively, but not for the third site where stormwater contained only 2 mg/L chloride. Unfortunately, deterioration of the DSA anode was observed after only 8–10 h of its cumulative operation time, very likely due to high voltage that had to be applied to low saline stormwater to achieve the required current density. In conclusion, ECO was found to be a very promising low energy disinfection technology for stormwater, but far more work is needed to optimise the technology for unique stormwater conditions. •ECO disinfection performance of pre-treated low chloride stormwater is assessed.•3 log reduction of faecal coliform was achieved under low unit energy consumption.•The dominant disinfection mechanism is chlorination.•Deterioration of tested anode was occurred due to the high operational voltage.•Further anode study should be carried to select the fit for purpose anode type.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2018.04.059