Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers

Sonic anemometers–thermometers (SATs) are robust instruments used in numerous research and analytical micrometerological studies. The accuracy and precision of the measured mean and turbulent fluctuations of wind speed and temperature are unknown across a range of ambient conditions and among differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural and forest meteorology 2005-11, Vol.133 (1), p.119-139
Hauptverfasser: Loescher, H.W., Ocheltree, T., Tanner, B., Swiatek, E., Dano, B., Wong, J., Zimmerman, G., Campbell, J., Stock, C., Jacobsen, L., Shiga, Y., Kollas, J., Liburdy, J., Law, B.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 1
container_start_page 119
container_title Agricultural and forest meteorology
container_volume 133
creator Loescher, H.W.
Ocheltree, T.
Tanner, B.
Swiatek, E.
Dano, B.
Wong, J.
Zimmerman, G.
Campbell, J.
Stock, C.
Jacobsen, L.
Shiga, Y.
Kollas, J.
Liburdy, J.
Law, B.E.
description Sonic anemometers–thermometers (SATs) are robust instruments used in numerous research and analytical micrometerological studies. The accuracy and precision of the measured mean and turbulent fluctuations of wind speed and temperature are unknown across a range of ambient conditions and among different model SATs. Here, we compared quantities from eight different model SATs: (i) mean temperature ( T s ¯ ) in an acoustically isolated chamber, (ii) mean vertical wind speed ( w s ¯ ) in a low-speed wind tunnel, and (iii) wind statistics with data collected over a research field. Potential differences in buoyancy flux ( w ′ T ′ ¯ ) due to different responses among SATs to changes in air temperature were also examined. The T s ¯ response from each model SAT to air temperature departed from a 1:1 relationship across all, or part, of the range in tested temperatures. w s ¯ from all SATs did not behave 1:1 to an independent measure of vertical wind speed using a hot-film anemometer, and there were consistent patterns based on the physical design of the SAT. The observed differences in σ w 2 and σ T 2 among SATs and their potential to affect scalar fluxes are discussed. Large variability was observed in wind statistics among SATs in field conditions. Uncertainty in w ′ T ′ ¯ among sensors due to their different responses to T a ¯ for each 15-min averaging period ranged −23.1 to +16.1%, and range from −1 to +8% when averaged over ∼940 15-min periods. Use of SAT derived data are discussed for: (i) estimating fluxes, advection, and the WPL term, (ii) comparison of data from multiple SATs in an individual study, and (iii) temporal and spatial scaling or comparisons of flux estimates that were derived from different model SATs.
doi_str_mv 10.1016/j.agrformet.2005.08.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20353229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168192305001826</els_id><sourcerecordid>20353229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-e15cb64a08ede36a6662d70d08aa208b2a73d08344de6fa18b827caa0e7c0be03</originalsourceid><addsrcrecordid>eNqFkE2OEzEQhS0EEmHgDOMN7Lop2912ZzmK-JNGYgGztiru8uAobQfbGTQ77sANOQmOEsGSja1X-urV02PsWkAvQOi3ux7vs095odpLgLGHqQdYP2ErMRnVSTnAU7Zq5NSJtVTP2YtSdgBCGrNescdNWg6YQ0mRJ88rLQfKWI-ZOMaZ_wjtKRVrKDW4wkPkLsWascl4zyk-hJziQrEWjktqozl4T7kNeLMMrrnQklo2yr9__qrfKF9UecmeedwXenX5r9jd-3dfNx-7288fPm1ubjs3aF07EqPb6gFhopmURq21nA3MMCFKmLYSjWpCDcNM2qOYtpM0DhHIONgSqCv25ux7yOn7kUq1SyiO9vuWLB2LlaBGJeW6geYMupxKyeTtIYcF86MVYE9V2539W7U9VW1hsq3qtvn6cgKLw73PGF0o_9aNavG0atz1mfOYTlaNufsiQSgQMI7jcCJuzgS1Rh4CZVtcoOhoDplctXMK_03zB3_yp6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20353229</pqid></control><display><type>article</type><title>Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Loescher, H.W. ; Ocheltree, T. ; Tanner, B. ; Swiatek, E. ; Dano, B. ; Wong, J. ; Zimmerman, G. ; Campbell, J. ; Stock, C. ; Jacobsen, L. ; Shiga, Y. ; Kollas, J. ; Liburdy, J. ; Law, B.E.</creator><creatorcontrib>Loescher, H.W. ; Ocheltree, T. ; Tanner, B. ; Swiatek, E. ; Dano, B. ; Wong, J. ; Zimmerman, G. ; Campbell, J. ; Stock, C. ; Jacobsen, L. ; Shiga, Y. ; Kollas, J. ; Liburdy, J. ; Law, B.E.</creatorcontrib><description>Sonic anemometers–thermometers (SATs) are robust instruments used in numerous research and analytical micrometerological studies. The accuracy and precision of the measured mean and turbulent fluctuations of wind speed and temperature are unknown across a range of ambient conditions and among different model SATs. Here, we compared quantities from eight different model SATs: (i) mean temperature ( T s ¯ ) in an acoustically isolated chamber, (ii) mean vertical wind speed ( w s ¯ ) in a low-speed wind tunnel, and (iii) wind statistics with data collected over a research field. Potential differences in buoyancy flux ( w ′ T ′ ¯ ) due to different responses among SATs to changes in air temperature were also examined. The T s ¯ response from each model SAT to air temperature departed from a 1:1 relationship across all, or part, of the range in tested temperatures. w s ¯ from all SATs did not behave 1:1 to an independent measure of vertical wind speed using a hot-film anemometer, and there were consistent patterns based on the physical design of the SAT. The observed differences in σ w 2 and σ T 2 among SATs and their potential to affect scalar fluxes are discussed. Large variability was observed in wind statistics among SATs in field conditions. Uncertainty in w ′ T ′ ¯ among sensors due to their different responses to T a ¯ for each 15-min averaging period ranged −23.1 to +16.1%, and range from −1 to +8% when averaged over ∼940 15-min periods. Use of SAT derived data are discussed for: (i) estimating fluxes, advection, and the WPL term, (ii) comparison of data from multiple SATs in an individual study, and (iii) temporal and spatial scaling or comparisons of flux estimates that were derived from different model SATs.</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/j.agrformet.2005.08.009</identifier><identifier>CODEN: AFMEEB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>acoustic properties ; Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agronomy. Soil science and plant productions ; anemometers ; Biological and medical sciences ; Comparison ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; meteorological instruments ; microclimate ; Sonic anemometer ; Sonic temperature ; thermometers ; turbulent flow ; Uncertainties ; wind ; wind speed ; Wind tunnel ; wind tunnels</subject><ispartof>Agricultural and forest meteorology, 2005-11, Vol.133 (1), p.119-139</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-e15cb64a08ede36a6662d70d08aa208b2a73d08344de6fa18b827caa0e7c0be03</citedby><cites>FETCH-LOGICAL-c466t-e15cb64a08ede36a6662d70d08aa208b2a73d08344de6fa18b827caa0e7c0be03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.agrformet.2005.08.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17334463$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Loescher, H.W.</creatorcontrib><creatorcontrib>Ocheltree, T.</creatorcontrib><creatorcontrib>Tanner, B.</creatorcontrib><creatorcontrib>Swiatek, E.</creatorcontrib><creatorcontrib>Dano, B.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Zimmerman, G.</creatorcontrib><creatorcontrib>Campbell, J.</creatorcontrib><creatorcontrib>Stock, C.</creatorcontrib><creatorcontrib>Jacobsen, L.</creatorcontrib><creatorcontrib>Shiga, Y.</creatorcontrib><creatorcontrib>Kollas, J.</creatorcontrib><creatorcontrib>Liburdy, J.</creatorcontrib><creatorcontrib>Law, B.E.</creatorcontrib><title>Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers</title><title>Agricultural and forest meteorology</title><description>Sonic anemometers–thermometers (SATs) are robust instruments used in numerous research and analytical micrometerological studies. The accuracy and precision of the measured mean and turbulent fluctuations of wind speed and temperature are unknown across a range of ambient conditions and among different model SATs. Here, we compared quantities from eight different model SATs: (i) mean temperature ( T s ¯ ) in an acoustically isolated chamber, (ii) mean vertical wind speed ( w s ¯ ) in a low-speed wind tunnel, and (iii) wind statistics with data collected over a research field. Potential differences in buoyancy flux ( w ′ T ′ ¯ ) due to different responses among SATs to changes in air temperature were also examined. The T s ¯ response from each model SAT to air temperature departed from a 1:1 relationship across all, or part, of the range in tested temperatures. w s ¯ from all SATs did not behave 1:1 to an independent measure of vertical wind speed using a hot-film anemometer, and there were consistent patterns based on the physical design of the SAT. The observed differences in σ w 2 and σ T 2 among SATs and their potential to affect scalar fluxes are discussed. Large variability was observed in wind statistics among SATs in field conditions. Uncertainty in w ′ T ′ ¯ among sensors due to their different responses to T a ¯ for each 15-min averaging period ranged −23.1 to +16.1%, and range from −1 to +8% when averaged over ∼940 15-min periods. Use of SAT derived data are discussed for: (i) estimating fluxes, advection, and the WPL term, (ii) comparison of data from multiple SATs in an individual study, and (iii) temporal and spatial scaling or comparisons of flux estimates that were derived from different model SATs.</description><subject>acoustic properties</subject><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agronomy. Soil science and plant productions</subject><subject>anemometers</subject><subject>Biological and medical sciences</subject><subject>Comparison</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>meteorological instruments</subject><subject>microclimate</subject><subject>Sonic anemometer</subject><subject>Sonic temperature</subject><subject>thermometers</subject><subject>turbulent flow</subject><subject>Uncertainties</subject><subject>wind</subject><subject>wind speed</subject><subject>Wind tunnel</subject><subject>wind tunnels</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE2OEzEQhS0EEmHgDOMN7Lop2912ZzmK-JNGYgGztiru8uAobQfbGTQ77sANOQmOEsGSja1X-urV02PsWkAvQOi3ux7vs095odpLgLGHqQdYP2ErMRnVSTnAU7Zq5NSJtVTP2YtSdgBCGrNescdNWg6YQ0mRJ88rLQfKWI-ZOMaZ_wjtKRVrKDW4wkPkLsWascl4zyk-hJziQrEWjktqozl4T7kNeLMMrrnQklo2yr9__qrfKF9UecmeedwXenX5r9jd-3dfNx-7288fPm1ubjs3aF07EqPb6gFhopmURq21nA3MMCFKmLYSjWpCDcNM2qOYtpM0DhHIONgSqCv25ux7yOn7kUq1SyiO9vuWLB2LlaBGJeW6geYMupxKyeTtIYcF86MVYE9V2539W7U9VW1hsq3qtvn6cgKLw73PGF0o_9aNavG0atz1mfOYTlaNufsiQSgQMI7jcCJuzgS1Rh4CZVtcoOhoDplctXMK_03zB3_yp6U</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Loescher, H.W.</creator><creator>Ocheltree, T.</creator><creator>Tanner, B.</creator><creator>Swiatek, E.</creator><creator>Dano, B.</creator><creator>Wong, J.</creator><creator>Zimmerman, G.</creator><creator>Campbell, J.</creator><creator>Stock, C.</creator><creator>Jacobsen, L.</creator><creator>Shiga, Y.</creator><creator>Kollas, J.</creator><creator>Liburdy, J.</creator><creator>Law, B.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20051101</creationdate><title>Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers</title><author>Loescher, H.W. ; Ocheltree, T. ; Tanner, B. ; Swiatek, E. ; Dano, B. ; Wong, J. ; Zimmerman, G. ; Campbell, J. ; Stock, C. ; Jacobsen, L. ; Shiga, Y. ; Kollas, J. ; Liburdy, J. ; Law, B.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-e15cb64a08ede36a6662d70d08aa208b2a73d08344de6fa18b827caa0e7c0be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>acoustic properties</topic><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agronomy. Soil science and plant productions</topic><topic>anemometers</topic><topic>Biological and medical sciences</topic><topic>Comparison</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>meteorological instruments</topic><topic>microclimate</topic><topic>Sonic anemometer</topic><topic>Sonic temperature</topic><topic>thermometers</topic><topic>turbulent flow</topic><topic>Uncertainties</topic><topic>wind</topic><topic>wind speed</topic><topic>Wind tunnel</topic><topic>wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loescher, H.W.</creatorcontrib><creatorcontrib>Ocheltree, T.</creatorcontrib><creatorcontrib>Tanner, B.</creatorcontrib><creatorcontrib>Swiatek, E.</creatorcontrib><creatorcontrib>Dano, B.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Zimmerman, G.</creatorcontrib><creatorcontrib>Campbell, J.</creatorcontrib><creatorcontrib>Stock, C.</creatorcontrib><creatorcontrib>Jacobsen, L.</creatorcontrib><creatorcontrib>Shiga, Y.</creatorcontrib><creatorcontrib>Kollas, J.</creatorcontrib><creatorcontrib>Liburdy, J.</creatorcontrib><creatorcontrib>Law, B.E.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loescher, H.W.</au><au>Ocheltree, T.</au><au>Tanner, B.</au><au>Swiatek, E.</au><au>Dano, B.</au><au>Wong, J.</au><au>Zimmerman, G.</au><au>Campbell, J.</au><au>Stock, C.</au><au>Jacobsen, L.</au><au>Shiga, Y.</au><au>Kollas, J.</au><au>Liburdy, J.</au><au>Law, B.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>133</volume><issue>1</issue><spage>119</spage><epage>139</epage><pages>119-139</pages><issn>0168-1923</issn><eissn>1873-2240</eissn><coden>AFMEEB</coden><abstract>Sonic anemometers–thermometers (SATs) are robust instruments used in numerous research and analytical micrometerological studies. The accuracy and precision of the measured mean and turbulent fluctuations of wind speed and temperature are unknown across a range of ambient conditions and among different model SATs. Here, we compared quantities from eight different model SATs: (i) mean temperature ( T s ¯ ) in an acoustically isolated chamber, (ii) mean vertical wind speed ( w s ¯ ) in a low-speed wind tunnel, and (iii) wind statistics with data collected over a research field. Potential differences in buoyancy flux ( w ′ T ′ ¯ ) due to different responses among SATs to changes in air temperature were also examined. The T s ¯ response from each model SAT to air temperature departed from a 1:1 relationship across all, or part, of the range in tested temperatures. w s ¯ from all SATs did not behave 1:1 to an independent measure of vertical wind speed using a hot-film anemometer, and there were consistent patterns based on the physical design of the SAT. The observed differences in σ w 2 and σ T 2 among SATs and their potential to affect scalar fluxes are discussed. Large variability was observed in wind statistics among SATs in field conditions. Uncertainty in w ′ T ′ ¯ among sensors due to their different responses to T a ¯ for each 15-min averaging period ranged −23.1 to +16.1%, and range from −1 to +8% when averaged over ∼940 15-min periods. Use of SAT derived data are discussed for: (i) estimating fluxes, advection, and the WPL term, (ii) comparison of data from multiple SATs in an individual study, and (iii) temporal and spatial scaling or comparisons of flux estimates that were derived from different model SATs.</abstract><cop>Amsterdam</cop><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.agrformet.2005.08.009</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1923
ispartof Agricultural and forest meteorology, 2005-11, Vol.133 (1), p.119-139
issn 0168-1923
1873-2240
language eng
recordid cdi_proquest_miscellaneous_20353229
source Access via ScienceDirect (Elsevier)
subjects acoustic properties
Agricultural and forest climatology and meteorology. Irrigation. Drainage
Agronomy. Soil science and plant productions
anemometers
Biological and medical sciences
Comparison
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
meteorological instruments
microclimate
Sonic anemometer
Sonic temperature
thermometers
turbulent flow
Uncertainties
wind
wind speed
Wind tunnel
wind tunnels
title Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20temperature%20and%20wind%20statistics%20in%20contrasting%20environments%20among%20different%20sonic%20anemometer%E2%80%93thermometers&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Loescher,%20H.W.&rft.date=2005-11-01&rft.volume=133&rft.issue=1&rft.spage=119&rft.epage=139&rft.pages=119-139&rft.issn=0168-1923&rft.eissn=1873-2240&rft.coden=AFMEEB&rft_id=info:doi/10.1016/j.agrformet.2005.08.009&rft_dat=%3Cproquest_cross%3E20353229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20353229&rft_id=info:pmid/&rft_els_id=S0168192305001826&rfr_iscdi=true