Optimization model for multiplicative noise and blur removal based on Gaussian curvature regularization

In this paper, we focus on the restoration of images that are simultaneously blurred and corrupted by multiplicative noise. First, we introduce a variational restoration model consisting of the convex data-fitting term and the Gaussian curvature of the image as a regularizer to remove multiplicative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2018-05, Vol.35 (5), p.798-812
Hauptverfasser: Ren, Fuquan, Zhou, Roberta Rui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812
container_issue 5
container_start_page 798
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 35
creator Ren, Fuquan
Zhou, Roberta Rui
description In this paper, we focus on the restoration of images that are simultaneously blurred and corrupted by multiplicative noise. First, we introduce a variational restoration model consisting of the convex data-fitting term and the Gaussian curvature of the image as a regularizer to remove multiplicative Gamma noise because it is able to eliminate staircase effects while preserving sharp edges, textures, and other fine structures of the image. We then propose computing the minimizers of our restoration functionals by applying the augmented Lagrange multiplier method with splitting techniques. The numerical results in this paper show that our method has the potential to outperform other approaches in multiplicative noise removal with simultaneous deblurring.
doi_str_mv 10.1364/JOSAA.35.000798
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2035244836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035244836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-e30fe2d9ea7e00074f64eeb2dcd6af97d8c513340ac6e58467068fd28c7fb6e33</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqUwsyGPLGkd23GcsaqggCp1AObIsS-VkfOBHVeCX09KC9OddM-9unsQuk3JPGWCL162r8vlnGVzQkheyDM0TTNKEpkxej72RPIkz2gxQVchfIwMFzK_RBNa5FTwgk3RbtsPtrHfarBdi5vOgMN153ET3WB7Z_U42ANuOxsAq9bgykWPPTTdXjlcqQAGj4trFUOwqsU6-r0aooeR2UWn_Cn6Gl3UygW4OdUZen98eFs9JZvt-nm13CR6vGlIgJEaqClA5XB4ideCA1TUaCNUXeRG6ixljBOlBWSSi5wIWRsqdV5XAhiboftjbu-7zwhhKBsbNDinWuhiKClhGeVcMjGiiyOqfReCh7rsvW2U_ypTUh7slr92S5aVR7vjxt0pPFYNmH_-Tyf7AfkJeC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035244836</pqid></control><display><type>article</type><title>Optimization model for multiplicative noise and blur removal based on Gaussian curvature regularization</title><source>Optica Publishing Group Journals</source><creator>Ren, Fuquan ; Zhou, Roberta Rui</creator><creatorcontrib>Ren, Fuquan ; Zhou, Roberta Rui</creatorcontrib><description>In this paper, we focus on the restoration of images that are simultaneously blurred and corrupted by multiplicative noise. First, we introduce a variational restoration model consisting of the convex data-fitting term and the Gaussian curvature of the image as a regularizer to remove multiplicative Gamma noise because it is able to eliminate staircase effects while preserving sharp edges, textures, and other fine structures of the image. We then propose computing the minimizers of our restoration functionals by applying the augmented Lagrange multiplier method with splitting techniques. The numerical results in this paper show that our method has the potential to outperform other approaches in multiplicative noise removal with simultaneous deblurring.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.35.000798</identifier><identifier>PMID: 29726493</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2018-05, Vol.35 (5), p.798-812</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-e30fe2d9ea7e00074f64eeb2dcd6af97d8c513340ac6e58467068fd28c7fb6e33</citedby><cites>FETCH-LOGICAL-c297t-e30fe2d9ea7e00074f64eeb2dcd6af97d8c513340ac6e58467068fd28c7fb6e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29726493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Fuquan</creatorcontrib><creatorcontrib>Zhou, Roberta Rui</creatorcontrib><title>Optimization model for multiplicative noise and blur removal based on Gaussian curvature regularization</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>In this paper, we focus on the restoration of images that are simultaneously blurred and corrupted by multiplicative noise. First, we introduce a variational restoration model consisting of the convex data-fitting term and the Gaussian curvature of the image as a regularizer to remove multiplicative Gamma noise because it is able to eliminate staircase effects while preserving sharp edges, textures, and other fine structures of the image. We then propose computing the minimizers of our restoration functionals by applying the augmented Lagrange multiplier method with splitting techniques. The numerical results in this paper show that our method has the potential to outperform other approaches in multiplicative noise removal with simultaneous deblurring.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EoqUwsyGPLGkd23GcsaqggCp1AObIsS-VkfOBHVeCX09KC9OddM-9unsQuk3JPGWCL162r8vlnGVzQkheyDM0TTNKEpkxej72RPIkz2gxQVchfIwMFzK_RBNa5FTwgk3RbtsPtrHfarBdi5vOgMN153ET3WB7Z_U42ANuOxsAq9bgykWPPTTdXjlcqQAGj4trFUOwqsU6-r0aooeR2UWn_Cn6Gl3UygW4OdUZen98eFs9JZvt-nm13CR6vGlIgJEaqClA5XB4ideCA1TUaCNUXeRG6ixljBOlBWSSi5wIWRsqdV5XAhiboftjbu-7zwhhKBsbNDinWuhiKClhGeVcMjGiiyOqfReCh7rsvW2U_ypTUh7slr92S5aVR7vjxt0pPFYNmH_-Tyf7AfkJeC4</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Ren, Fuquan</creator><creator>Zhou, Roberta Rui</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180501</creationdate><title>Optimization model for multiplicative noise and blur removal based on Gaussian curvature regularization</title><author>Ren, Fuquan ; Zhou, Roberta Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-e30fe2d9ea7e00074f64eeb2dcd6af97d8c513340ac6e58467068fd28c7fb6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Fuquan</creatorcontrib><creatorcontrib>Zhou, Roberta Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Fuquan</au><au>Zhou, Roberta Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization model for multiplicative noise and blur removal based on Gaussian curvature regularization</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>35</volume><issue>5</issue><spage>798</spage><epage>812</epage><pages>798-812</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>In this paper, we focus on the restoration of images that are simultaneously blurred and corrupted by multiplicative noise. First, we introduce a variational restoration model consisting of the convex data-fitting term and the Gaussian curvature of the image as a regularizer to remove multiplicative Gamma noise because it is able to eliminate staircase effects while preserving sharp edges, textures, and other fine structures of the image. We then propose computing the minimizers of our restoration functionals by applying the augmented Lagrange multiplier method with splitting techniques. The numerical results in this paper show that our method has the potential to outperform other approaches in multiplicative noise removal with simultaneous deblurring.</abstract><cop>United States</cop><pmid>29726493</pmid><doi>10.1364/JOSAA.35.000798</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2018-05, Vol.35 (5), p.798-812
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_2035244836
source Optica Publishing Group Journals
title Optimization model for multiplicative noise and blur removal based on Gaussian curvature regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20model%20for%20multiplicative%20noise%20and%20blur%20removal%20based%20on%20Gaussian%20curvature%20regularization&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Ren,%20Fuquan&rft.date=2018-05-01&rft.volume=35&rft.issue=5&rft.spage=798&rft.epage=812&rft.pages=798-812&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.35.000798&rft_dat=%3Cproquest_cross%3E2035244836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2035244836&rft_id=info:pmid/29726493&rfr_iscdi=true