The antibacterial, cytotoxic, and flexural properties of a composite resin containing a quaternary ammonium monomer
The use of composite resin to restore teeth has increased substantially during the last decades. However, secondary caries and the fracture of restorations are the leading reasons for clinical restoration failure. Mechanically strong composite resins with caries-inhibition capabilities are needed. A...
Gespeichert in:
Veröffentlicht in: | The Journal of prosthetic dentistry 2018-10, Vol.120 (4), p.609-616 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of composite resin to restore teeth has increased substantially during the last decades. However, secondary caries and the fracture of restorations are the leading reasons for clinical restoration failure. Mechanically strong composite resins with caries-inhibition capabilities are needed. Although antibacterial dimethacrylate quaternary ammonium monomers have been synthesized, composite resin containing dimethacrylate quaternary ammonium monomers and glass fillers has rarely been reported.
The purpose of this in vitro study was to evaluate the possibility of the clinical use of an experimental composite resin containing urethane dimethacrylate quaternary ammonium compound (UDMQA-12) by investigating its antibacterial activity, cytotoxicity, flexural strength, and flexural modulus.
Antibacterial activity against Streptococcus mutans was investigated by means of direct contact test. The antibacterial activity of specimens after water immersion and saliva treatment was also tested. These were compared with a commercially available composite resin, Z250, and a glass ionomer cement, Fuji VII. Effects of the eluent from the experimental composite resin on the metabolic activity of human dental pulp cells were quantified. Disks of 1 mm in thickness and 15 mm in diameter were used in the antibacterial and cytotoxic tests. Flexural strength and flexural modulus were measured with a 3-point bend test with bars of 2×2×25 mm. Three commercially available composite resins (Filtek Z250, G-aenial Anterior, and G-aenial Posterior) were used as controls in the flexural test.
Bacterial growth was inhibited on the experimental composite resin. After water immersion or saliva treatment, the experimental composite resin showed significant antibacterial effect compared with the conventional composite resin (P |
---|---|
ISSN: | 0022-3913 1097-6841 |
DOI: | 10.1016/j.prosdent.2017.12.017 |