Enhanced thermal stability of nanograined metals below a critical grain size
The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copp...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2018-05, Vol.360 (6388), p.526-530 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | 6388 |
container_start_page | 526 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 360 |
creator | Zhou, X Li, X Y Lu, K |
description | The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copper and nickel produced from plastic deformation at low temperatures exhibit notable thermal stability below a critical grain size. The instability temperature rises substantially at smaller grain sizes, and the nanograins remain stable even above the recrystallization temperatures of coarse grains. The inherent thermal stability of nanograins originates from an autonomous grain boundary evolution to low-energy states due to activation of partial dislocations in plastic deformation. |
doi_str_mv | 10.1126/science.aar6941 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2035240843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035240843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-b7733f4bb9cbe114680d28f0483ee2044d09f73e183c381e1466fd6ba4a62fa83</originalsourceid><addsrcrecordid>eNpdkDtPwzAURi0EoqUwsyFLLCxp_Upij6gqD6kSC8yR7dxQV3kUOxEqvx6XBgamO9zzHd37IXRNyZxSli2CddBamGvtMyXoCZpSotJEMcJP0ZQQniWS5OkEXYSwJSTuFD9HE6ZyJlTKp2i9ajc6Gkrcb8A3usah18bVrt_jrsKtbrt3r10bgQZ6XQdsoO4-scbWu97ZGPjZ4-C-4BKdVRGBq3HO0NvD6nX5lKxfHp-X9-vECs76xOQ555UwRlkDlIpMkpLJigjJARgRoiSqyjlQyS2XFCKRVWVmtNAZq7TkM3R39O589zFA6IvGBQt1rVvohlDE71MmiBQ8orf_0G03-DZed6AEz4RkB-HiSFnfheChKnbeNdrvC0qKQ9HFWHQxFh0TN6N3MA2Uf_xvs_wb7616zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034364828</pqid></control><display><type>article</type><title>Enhanced thermal stability of nanograined metals below a critical grain size</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Zhou, X ; Li, X Y ; Lu, K</creator><creatorcontrib>Zhou, X ; Li, X Y ; Lu, K</creatorcontrib><description>The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copper and nickel produced from plastic deformation at low temperatures exhibit notable thermal stability below a critical grain size. The instability temperature rises substantially at smaller grain sizes, and the nanograins remain stable even above the recrystallization temperatures of coarse grains. The inherent thermal stability of nanograins originates from an autonomous grain boundary evolution to low-energy states due to activation of partial dislocations in plastic deformation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aar6941</identifier><identifier>PMID: 29724953</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Ambient temperature ; Coarsening ; Copper ; Deformation ; Dislocations ; Grain boundaries ; Grain size ; Heavy metals ; High temperature ; Liquid nitrogen ; Low temperature ; Materials science ; Metals ; Nanomaterials ; Nickel ; Particle size ; Plastic deformation ; Recrystallization ; Stability ; Thermal stability</subject><ispartof>Science (American Association for the Advancement of Science), 2018-05, Vol.360 (6388), p.526-530</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-b7733f4bb9cbe114680d28f0483ee2044d09f73e183c381e1466fd6ba4a62fa83</citedby><cites>FETCH-LOGICAL-c432t-b7733f4bb9cbe114680d28f0483ee2044d09f73e183c381e1466fd6ba4a62fa83</cites><orcidid>0000-0003-0637-6060 ; 0000-0001-5763-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29724953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, X</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Lu, K</creatorcontrib><title>Enhanced thermal stability of nanograined metals below a critical grain size</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copper and nickel produced from plastic deformation at low temperatures exhibit notable thermal stability below a critical grain size. The instability temperature rises substantially at smaller grain sizes, and the nanograins remain stable even above the recrystallization temperatures of coarse grains. The inherent thermal stability of nanograins originates from an autonomous grain boundary evolution to low-energy states due to activation of partial dislocations in plastic deformation.</description><subject>Ambient temperature</subject><subject>Coarsening</subject><subject>Copper</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heavy metals</subject><subject>High temperature</subject><subject>Liquid nitrogen</subject><subject>Low temperature</subject><subject>Materials science</subject><subject>Metals</subject><subject>Nanomaterials</subject><subject>Nickel</subject><subject>Particle size</subject><subject>Plastic deformation</subject><subject>Recrystallization</subject><subject>Stability</subject><subject>Thermal stability</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAURi0EoqUwsyFLLCxp_Upij6gqD6kSC8yR7dxQV3kUOxEqvx6XBgamO9zzHd37IXRNyZxSli2CddBamGvtMyXoCZpSotJEMcJP0ZQQniWS5OkEXYSwJSTuFD9HE6ZyJlTKp2i9ajc6Gkrcb8A3usah18bVrt_jrsKtbrt3r10bgQZ6XQdsoO4-scbWu97ZGPjZ4-C-4BKdVRGBq3HO0NvD6nX5lKxfHp-X9-vECs76xOQ555UwRlkDlIpMkpLJigjJARgRoiSqyjlQyS2XFCKRVWVmtNAZq7TkM3R39O589zFA6IvGBQt1rVvohlDE71MmiBQ8orf_0G03-DZed6AEz4RkB-HiSFnfheChKnbeNdrvC0qKQ9HFWHQxFh0TN6N3MA2Uf_xvs_wb7616zQ</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Zhou, X</creator><creator>Li, X Y</creator><creator>Lu, K</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0637-6060</orcidid><orcidid>https://orcid.org/0000-0001-5763-9145</orcidid></search><sort><creationdate>20180504</creationdate><title>Enhanced thermal stability of nanograined metals below a critical grain size</title><author>Zhou, X ; Li, X Y ; Lu, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-b7733f4bb9cbe114680d28f0483ee2044d09f73e183c381e1466fd6ba4a62fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambient temperature</topic><topic>Coarsening</topic><topic>Copper</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heavy metals</topic><topic>High temperature</topic><topic>Liquid nitrogen</topic><topic>Low temperature</topic><topic>Materials science</topic><topic>Metals</topic><topic>Nanomaterials</topic><topic>Nickel</topic><topic>Particle size</topic><topic>Plastic deformation</topic><topic>Recrystallization</topic><topic>Stability</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, X</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Lu, K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, X</au><au>Li, X Y</au><au>Lu, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermal stability of nanograined metals below a critical grain size</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-05-04</date><risdate>2018</risdate><volume>360</volume><issue>6388</issue><spage>526</spage><epage>530</epage><pages>526-530</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copper and nickel produced from plastic deformation at low temperatures exhibit notable thermal stability below a critical grain size. The instability temperature rises substantially at smaller grain sizes, and the nanograins remain stable even above the recrystallization temperatures of coarse grains. The inherent thermal stability of nanograins originates from an autonomous grain boundary evolution to low-energy states due to activation of partial dislocations in plastic deformation.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>29724953</pmid><doi>10.1126/science.aar6941</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0637-6060</orcidid><orcidid>https://orcid.org/0000-0001-5763-9145</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-05, Vol.360 (6388), p.526-530 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2035240843 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Ambient temperature Coarsening Copper Deformation Dislocations Grain boundaries Grain size Heavy metals High temperature Liquid nitrogen Low temperature Materials science Metals Nanomaterials Nickel Particle size Plastic deformation Recrystallization Stability Thermal stability |
title | Enhanced thermal stability of nanograined metals below a critical grain size |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermal%20stability%20of%20nanograined%20metals%20below%20a%20critical%20grain%20size&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zhou,%20X&rft.date=2018-05-04&rft.volume=360&rft.issue=6388&rft.spage=526&rft.epage=530&rft.pages=526-530&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aar6941&rft_dat=%3Cproquest_cross%3E2035240843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034364828&rft_id=info:pmid/29724953&rfr_iscdi=true |