Enhanced thermal stability of nanograined metals below a critical grain size

The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-05, Vol.360 (6388), p.526-530
Hauptverfasser: Zhou, X, Li, X Y, Lu, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530
container_issue 6388
container_start_page 526
container_title Science (American Association for the Advancement of Science)
container_volume 360
creator Zhou, X
Li, X Y
Lu, K
description The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copper and nickel produced from plastic deformation at low temperatures exhibit notable thermal stability below a critical grain size. The instability temperature rises substantially at smaller grain sizes, and the nanograins remain stable even above the recrystallization temperatures of coarse grains. The inherent thermal stability of nanograins originates from an autonomous grain boundary evolution to low-energy states due to activation of partial dislocations in plastic deformation.
doi_str_mv 10.1126/science.aar6941
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2035240843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035240843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-b7733f4bb9cbe114680d28f0483ee2044d09f73e183c381e1466fd6ba4a62fa83</originalsourceid><addsrcrecordid>eNpdkDtPwzAURi0EoqUwsyFLLCxp_Upij6gqD6kSC8yR7dxQV3kUOxEqvx6XBgamO9zzHd37IXRNyZxSli2CddBamGvtMyXoCZpSotJEMcJP0ZQQniWS5OkEXYSwJSTuFD9HE6ZyJlTKp2i9ajc6Gkrcb8A3usah18bVrt_jrsKtbrt3r10bgQZ6XQdsoO4-scbWu97ZGPjZ4-C-4BKdVRGBq3HO0NvD6nX5lKxfHp-X9-vECs76xOQ555UwRlkDlIpMkpLJigjJARgRoiSqyjlQyS2XFCKRVWVmtNAZq7TkM3R39O589zFA6IvGBQt1rVvohlDE71MmiBQ8orf_0G03-DZed6AEz4RkB-HiSFnfheChKnbeNdrvC0qKQ9HFWHQxFh0TN6N3MA2Uf_xvs_wb7616zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034364828</pqid></control><display><type>article</type><title>Enhanced thermal stability of nanograined metals below a critical grain size</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Zhou, X ; Li, X Y ; Lu, K</creator><creatorcontrib>Zhou, X ; Li, X Y ; Lu, K</creatorcontrib><description>The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copper and nickel produced from plastic deformation at low temperatures exhibit notable thermal stability below a critical grain size. The instability temperature rises substantially at smaller grain sizes, and the nanograins remain stable even above the recrystallization temperatures of coarse grains. The inherent thermal stability of nanograins originates from an autonomous grain boundary evolution to low-energy states due to activation of partial dislocations in plastic deformation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aar6941</identifier><identifier>PMID: 29724953</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Ambient temperature ; Coarsening ; Copper ; Deformation ; Dislocations ; Grain boundaries ; Grain size ; Heavy metals ; High temperature ; Liquid nitrogen ; Low temperature ; Materials science ; Metals ; Nanomaterials ; Nickel ; Particle size ; Plastic deformation ; Recrystallization ; Stability ; Thermal stability</subject><ispartof>Science (American Association for the Advancement of Science), 2018-05, Vol.360 (6388), p.526-530</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-b7733f4bb9cbe114680d28f0483ee2044d09f73e183c381e1466fd6ba4a62fa83</citedby><cites>FETCH-LOGICAL-c432t-b7733f4bb9cbe114680d28f0483ee2044d09f73e183c381e1466fd6ba4a62fa83</cites><orcidid>0000-0003-0637-6060 ; 0000-0001-5763-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29724953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, X</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Lu, K</creatorcontrib><title>Enhanced thermal stability of nanograined metals below a critical grain size</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copper and nickel produced from plastic deformation at low temperatures exhibit notable thermal stability below a critical grain size. The instability temperature rises substantially at smaller grain sizes, and the nanograins remain stable even above the recrystallization temperatures of coarse grains. The inherent thermal stability of nanograins originates from an autonomous grain boundary evolution to low-energy states due to activation of partial dislocations in plastic deformation.</description><subject>Ambient temperature</subject><subject>Coarsening</subject><subject>Copper</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heavy metals</subject><subject>High temperature</subject><subject>Liquid nitrogen</subject><subject>Low temperature</subject><subject>Materials science</subject><subject>Metals</subject><subject>Nanomaterials</subject><subject>Nickel</subject><subject>Particle size</subject><subject>Plastic deformation</subject><subject>Recrystallization</subject><subject>Stability</subject><subject>Thermal stability</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAURi0EoqUwsyFLLCxp_Upij6gqD6kSC8yR7dxQV3kUOxEqvx6XBgamO9zzHd37IXRNyZxSli2CddBamGvtMyXoCZpSotJEMcJP0ZQQniWS5OkEXYSwJSTuFD9HE6ZyJlTKp2i9ajc6Gkrcb8A3usah18bVrt_jrsKtbrt3r10bgQZ6XQdsoO4-scbWu97ZGPjZ4-C-4BKdVRGBq3HO0NvD6nX5lKxfHp-X9-vECs76xOQ555UwRlkDlIpMkpLJigjJARgRoiSqyjlQyS2XFCKRVWVmtNAZq7TkM3R39O589zFA6IvGBQt1rVvohlDE71MmiBQ8orf_0G03-DZed6AEz4RkB-HiSFnfheChKnbeNdrvC0qKQ9HFWHQxFh0TN6N3MA2Uf_xvs_wb7616zQ</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Zhou, X</creator><creator>Li, X Y</creator><creator>Lu, K</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0637-6060</orcidid><orcidid>https://orcid.org/0000-0001-5763-9145</orcidid></search><sort><creationdate>20180504</creationdate><title>Enhanced thermal stability of nanograined metals below a critical grain size</title><author>Zhou, X ; Li, X Y ; Lu, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-b7733f4bb9cbe114680d28f0483ee2044d09f73e183c381e1466fd6ba4a62fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambient temperature</topic><topic>Coarsening</topic><topic>Copper</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heavy metals</topic><topic>High temperature</topic><topic>Liquid nitrogen</topic><topic>Low temperature</topic><topic>Materials science</topic><topic>Metals</topic><topic>Nanomaterials</topic><topic>Nickel</topic><topic>Particle size</topic><topic>Plastic deformation</topic><topic>Recrystallization</topic><topic>Stability</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, X</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Lu, K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, X</au><au>Li, X Y</au><au>Lu, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermal stability of nanograined metals below a critical grain size</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-05-04</date><risdate>2018</risdate><volume>360</volume><issue>6388</issue><spage>526</spage><epage>530</epage><pages>526-530</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The limitation of nanograined materials is their strong tendency to coarsen at elevated temperatures. As grain size decreases into the nanoscale, grain coarsening occurs at much lower temperatures, as low as ambient temperatures for some metals. We discovered that nanometer-sized grains in pure copper and nickel produced from plastic deformation at low temperatures exhibit notable thermal stability below a critical grain size. The instability temperature rises substantially at smaller grain sizes, and the nanograins remain stable even above the recrystallization temperatures of coarse grains. The inherent thermal stability of nanograins originates from an autonomous grain boundary evolution to low-energy states due to activation of partial dislocations in plastic deformation.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>29724953</pmid><doi>10.1126/science.aar6941</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0637-6060</orcidid><orcidid>https://orcid.org/0000-0001-5763-9145</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-05, Vol.360 (6388), p.526-530
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2035240843
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Ambient temperature
Coarsening
Copper
Deformation
Dislocations
Grain boundaries
Grain size
Heavy metals
High temperature
Liquid nitrogen
Low temperature
Materials science
Metals
Nanomaterials
Nickel
Particle size
Plastic deformation
Recrystallization
Stability
Thermal stability
title Enhanced thermal stability of nanograined metals below a critical grain size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermal%20stability%20of%20nanograined%20metals%20below%20a%20critical%20grain%20size&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zhou,%20X&rft.date=2018-05-04&rft.volume=360&rft.issue=6388&rft.spage=526&rft.epage=530&rft.pages=526-530&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aar6941&rft_dat=%3Cproquest_cross%3E2035240843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034364828&rft_id=info:pmid/29724953&rfr_iscdi=true