legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism

Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in ∼100 Mg of Hg entering the lake's ecosystem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological applications 2008-12, Vol.18 (8), p.A12-A28
Hauptverfasser: Suchanek, Thomas H, Peter J. Richerson, R. A. Zierenberg, Collin A. Eagles-Smith, Darell G. Slotton, E. James Harner, David A. Osleger, Daniel W. Anderson, Joseph J. Cech Jr, S. Geoffrey Schladow, Arthur E. Colwell, Jeffrey F. Mount, Peggie S. King, David P. Adam, Kenneth J. McElroy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A28
container_issue 8
container_start_page A12
container_title Ecological applications
container_volume 18
creator Suchanek, Thomas H
Peter J. Richerson
R. A. Zierenberg
Collin A. Eagles-Smith
Darell G. Slotton
E. James Harner
David A. Osleger
Daniel W. Anderson
Joseph J. Cech Jr
S. Geoffrey Schladow
Arthur E. Colwell
Jeffrey F. Mount
Peggie S. King
David P. Adam
Kenneth J. McElroy
description Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in ∼100 Mg of Hg entering the lake's ecosystem. This series of papers represents the culmination of ∼15 years of Hg‐related studies on this ecosystem, following Hg from the ore body to the highest trophic levels. A series of physical, chemical, biological, and limnological studies elucidate how ongoing Hg loading to the lake is influenced by acid mine drainage and how wind‐driven currents and baroclinic circulation patterns redistribute Hg throughout the lake. Methylmercury (MeHg) production in this system is controlled by both sulfate‐reducing bacteria as well as newly identified iron‐reducing bacteria. Sediment cores (dated with dichlorodiphenyldichlorethane [DDD], ²¹⁰Pb, and ¹⁴C) to ∼250 cm depth (representing up to ∼3000 years before present) elucidate a record of total Hg (TotHg) loading to the lake from natural sources and mining and demonstrate how MeHg remains stable at depth within the sediment column for decades to millenia. Core data also identify other stresses that have influenced the Clear Lake Basin especially over the past 150 years. Although Clear Lake is one of the most Hg‐contaminated lakes in the world, biota do not exhibit MeHg concentrations as high as would be predicted based on the gross level of Hg loading. We compare Clear Lake's TotHg and MeHg concentrations with other sites worldwide and suggest several hypotheses to explain why this discrepancy exists. Based on our data, together with state and federal water and sediment quality criteria, we predict potential resulting environmental and human health effects and provide data that can assist remediation efforts.
doi_str_mv 10.1890/08-0363.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20350066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27645927</jstor_id><sourcerecordid>27645927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5082-daff9a9b3cc4e79133e67a9cc3ef37f9d6863905ed4d3ccc6ea07066748fac6b3</originalsourceid><addsrcrecordid>eNp1kEtr3TAQhUVpaNK0i_6AtloVunA6kmw9sruEvCCQQJpVF0JXHl0cbCuRbIr_fXXxpV11GJgD852zOIR8YnDGtIEfoCsQUpyxN-SEGWGqptH8bdHQsAqUZMfkfc7PUIZz_o4cM1OrxjB5Qn71uHN-oTHQAZOf00L94vtu3NGQ4kCHbtzrHOfkMdNupK7s6-ymzlP0MS95wuF8hWNCOsVydm7s8vCBHAXXZ_x4uKfk6ery58VNdXd_fXuxuat8A5pXrQvBOLMV3teoDBMCpXLGe4FBqGBaqaUw0GBbt4XxEh0okFLVOjgvt-KUfFtzX1J8nTFPduiyx753I8Y5Ww6igWIo4PcV9CnmnDDYl9QNLi2Wgd03aUHbfZOWFfbLIXTeDtj-Iw_VFUCuwO-ux-X_SfZy88ABNNOPD3rDeDF-Xo3PeYrpr5ErWTeGq_L_uv6Di9btUpft0yMHJgGYltzU4g8Y-ZFl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20350066</pqid></control><display><type>article</type><title>legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Suchanek, Thomas H ; Peter J. Richerson ; R. A. Zierenberg ; Collin A. Eagles-Smith ; Darell G. Slotton ; E. James Harner ; David A. Osleger ; Daniel W. Anderson ; Joseph J. Cech Jr ; S. Geoffrey Schladow ; Arthur E. Colwell ; Jeffrey F. Mount ; Peggie S. King ; David P. Adam ; Kenneth J. McElroy</creator><creatorcontrib>Suchanek, Thomas H ; Peter J. Richerson ; R. A. Zierenberg ; Collin A. Eagles-Smith ; Darell G. Slotton ; E. James Harner ; David A. Osleger ; Daniel W. Anderson ; Joseph J. Cech Jr ; S. Geoffrey Schladow ; Arthur E. Colwell ; Jeffrey F. Mount ; Peggie S. King ; David P. Adam ; Kenneth J. McElroy</creatorcontrib><description>Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in ∼100 Mg of Hg entering the lake's ecosystem. This series of papers represents the culmination of ∼15 years of Hg‐related studies on this ecosystem, following Hg from the ore body to the highest trophic levels. A series of physical, chemical, biological, and limnological studies elucidate how ongoing Hg loading to the lake is influenced by acid mine drainage and how wind‐driven currents and baroclinic circulation patterns redistribute Hg throughout the lake. Methylmercury (MeHg) production in this system is controlled by both sulfate‐reducing bacteria as well as newly identified iron‐reducing bacteria. Sediment cores (dated with dichlorodiphenyldichlorethane [DDD], ²¹⁰Pb, and ¹⁴C) to ∼250 cm depth (representing up to ∼3000 years before present) elucidate a record of total Hg (TotHg) loading to the lake from natural sources and mining and demonstrate how MeHg remains stable at depth within the sediment column for decades to millenia. Core data also identify other stresses that have influenced the Clear Lake Basin especially over the past 150 years. Although Clear Lake is one of the most Hg‐contaminated lakes in the world, biota do not exhibit MeHg concentrations as high as would be predicted based on the gross level of Hg loading. We compare Clear Lake's TotHg and MeHg concentrations with other sites worldwide and suggest several hypotheses to explain why this discrepancy exists. Based on our data, together with state and federal water and sediment quality criteria, we predict potential resulting environmental and human health effects and provide data that can assist remediation efforts.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.1890/08-0363.1</identifier><identifier>PMID: 19475916</identifier><language>eng</language><publisher>United States: Ecological Society of America</publisher><subject>acid mine drainage ; Applied ecology ; aquatic ecosystems ; benthic invertebrates ; birds ; California ; carbon ; Chemical Precipitation ; Clear Lake ; coring ; DDD (pesticide) ; Ecosystem ; fish ; Fresh Water - chemistry ; Freshwater fishes ; History, 19th Century ; History, 20th Century ; Human Activities ; human health ; Humans ; Lakes ; Lakeshores ; lead ; Lentic systems ; Mercury ; Mercury - chemistry ; Mercury - metabolism ; Mercury Poisoning ; methylmercury compounds ; mine tailings ; Mining ; Mining - history ; plankton ; radionuclides ; remediation ; sediment ; Sediments ; sulfate-reducing bacteria ; Sulfur ; Time Factors ; trophic relationships ; United States Environmental Protection Agency ; USA ; water ; Water Pollutants, Chemical - chemistry ; Water Pollutants, Chemical - metabolism ; Watersheds ; Wind</subject><ispartof>Ecological applications, 2008-12, Vol.18 (8), p.A12-A28</ispartof><rights>Copyright 2008 Ecological Society of America</rights><rights>2008 by the Ecological Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5082-daff9a9b3cc4e79133e67a9cc3ef37f9d6863905ed4d3ccc6ea07066748fac6b3</citedby><cites>FETCH-LOGICAL-c5082-daff9a9b3cc4e79133e67a9cc3ef37f9d6863905ed4d3ccc6ea07066748fac6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27645927$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27645927$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19475916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suchanek, Thomas H</creatorcontrib><creatorcontrib>Peter J. Richerson</creatorcontrib><creatorcontrib>R. A. Zierenberg</creatorcontrib><creatorcontrib>Collin A. Eagles-Smith</creatorcontrib><creatorcontrib>Darell G. Slotton</creatorcontrib><creatorcontrib>E. James Harner</creatorcontrib><creatorcontrib>David A. Osleger</creatorcontrib><creatorcontrib>Daniel W. Anderson</creatorcontrib><creatorcontrib>Joseph J. Cech Jr</creatorcontrib><creatorcontrib>S. Geoffrey Schladow</creatorcontrib><creatorcontrib>Arthur E. Colwell</creatorcontrib><creatorcontrib>Jeffrey F. Mount</creatorcontrib><creatorcontrib>Peggie S. King</creatorcontrib><creatorcontrib>David P. Adam</creatorcontrib><creatorcontrib>Kenneth J. McElroy</creatorcontrib><title>legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism</title><title>Ecological applications</title><addtitle>Ecol Appl</addtitle><description>Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in ∼100 Mg of Hg entering the lake's ecosystem. This series of papers represents the culmination of ∼15 years of Hg‐related studies on this ecosystem, following Hg from the ore body to the highest trophic levels. A series of physical, chemical, biological, and limnological studies elucidate how ongoing Hg loading to the lake is influenced by acid mine drainage and how wind‐driven currents and baroclinic circulation patterns redistribute Hg throughout the lake. Methylmercury (MeHg) production in this system is controlled by both sulfate‐reducing bacteria as well as newly identified iron‐reducing bacteria. Sediment cores (dated with dichlorodiphenyldichlorethane [DDD], ²¹⁰Pb, and ¹⁴C) to ∼250 cm depth (representing up to ∼3000 years before present) elucidate a record of total Hg (TotHg) loading to the lake from natural sources and mining and demonstrate how MeHg remains stable at depth within the sediment column for decades to millenia. Core data also identify other stresses that have influenced the Clear Lake Basin especially over the past 150 years. Although Clear Lake is one of the most Hg‐contaminated lakes in the world, biota do not exhibit MeHg concentrations as high as would be predicted based on the gross level of Hg loading. We compare Clear Lake's TotHg and MeHg concentrations with other sites worldwide and suggest several hypotheses to explain why this discrepancy exists. Based on our data, together with state and federal water and sediment quality criteria, we predict potential resulting environmental and human health effects and provide data that can assist remediation efforts.</description><subject>acid mine drainage</subject><subject>Applied ecology</subject><subject>aquatic ecosystems</subject><subject>benthic invertebrates</subject><subject>birds</subject><subject>California</subject><subject>carbon</subject><subject>Chemical Precipitation</subject><subject>Clear Lake</subject><subject>coring</subject><subject>DDD (pesticide)</subject><subject>Ecosystem</subject><subject>fish</subject><subject>Fresh Water - chemistry</subject><subject>Freshwater fishes</subject><subject>History, 19th Century</subject><subject>History, 20th Century</subject><subject>Human Activities</subject><subject>human health</subject><subject>Humans</subject><subject>Lakes</subject><subject>Lakeshores</subject><subject>lead</subject><subject>Lentic systems</subject><subject>Mercury</subject><subject>Mercury - chemistry</subject><subject>Mercury - metabolism</subject><subject>Mercury Poisoning</subject><subject>methylmercury compounds</subject><subject>mine tailings</subject><subject>Mining</subject><subject>Mining - history</subject><subject>plankton</subject><subject>radionuclides</subject><subject>remediation</subject><subject>sediment</subject><subject>Sediments</subject><subject>sulfate-reducing bacteria</subject><subject>Sulfur</subject><subject>Time Factors</subject><subject>trophic relationships</subject><subject>United States Environmental Protection Agency</subject><subject>USA</subject><subject>water</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Watersheds</subject><subject>Wind</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtr3TAQhUVpaNK0i_6AtloVunA6kmw9sruEvCCQQJpVF0JXHl0cbCuRbIr_fXXxpV11GJgD852zOIR8YnDGtIEfoCsQUpyxN-SEGWGqptH8bdHQsAqUZMfkfc7PUIZz_o4cM1OrxjB5Qn71uHN-oTHQAZOf00L94vtu3NGQ4kCHbtzrHOfkMdNupK7s6-ymzlP0MS95wuF8hWNCOsVydm7s8vCBHAXXZ_x4uKfk6ery58VNdXd_fXuxuat8A5pXrQvBOLMV3teoDBMCpXLGe4FBqGBaqaUw0GBbt4XxEh0okFLVOjgvt-KUfFtzX1J8nTFPduiyx753I8Y5Ww6igWIo4PcV9CnmnDDYl9QNLi2Wgd03aUHbfZOWFfbLIXTeDtj-Iw_VFUCuwO-ux-X_SfZy88ABNNOPD3rDeDF-Xo3PeYrpr5ErWTeGq_L_uv6Di9btUpft0yMHJgGYltzU4g8Y-ZFl</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Suchanek, Thomas H</creator><creator>Peter J. Richerson</creator><creator>R. A. Zierenberg</creator><creator>Collin A. Eagles-Smith</creator><creator>Darell G. Slotton</creator><creator>E. James Harner</creator><creator>David A. Osleger</creator><creator>Daniel W. Anderson</creator><creator>Joseph J. Cech Jr</creator><creator>S. Geoffrey Schladow</creator><creator>Arthur E. Colwell</creator><creator>Jeffrey F. Mount</creator><creator>Peggie S. King</creator><creator>David P. Adam</creator><creator>Kenneth J. McElroy</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>200812</creationdate><title>legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism</title><author>Suchanek, Thomas H ; Peter J. Richerson ; R. A. Zierenberg ; Collin A. Eagles-Smith ; Darell G. Slotton ; E. James Harner ; David A. Osleger ; Daniel W. Anderson ; Joseph J. Cech Jr ; S. Geoffrey Schladow ; Arthur E. Colwell ; Jeffrey F. Mount ; Peggie S. King ; David P. Adam ; Kenneth J. McElroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5082-daff9a9b3cc4e79133e67a9cc3ef37f9d6863905ed4d3ccc6ea07066748fac6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>acid mine drainage</topic><topic>Applied ecology</topic><topic>aquatic ecosystems</topic><topic>benthic invertebrates</topic><topic>birds</topic><topic>California</topic><topic>carbon</topic><topic>Chemical Precipitation</topic><topic>Clear Lake</topic><topic>coring</topic><topic>DDD (pesticide)</topic><topic>Ecosystem</topic><topic>fish</topic><topic>Fresh Water - chemistry</topic><topic>Freshwater fishes</topic><topic>History, 19th Century</topic><topic>History, 20th Century</topic><topic>Human Activities</topic><topic>human health</topic><topic>Humans</topic><topic>Lakes</topic><topic>Lakeshores</topic><topic>lead</topic><topic>Lentic systems</topic><topic>Mercury</topic><topic>Mercury - chemistry</topic><topic>Mercury - metabolism</topic><topic>Mercury Poisoning</topic><topic>methylmercury compounds</topic><topic>mine tailings</topic><topic>Mining</topic><topic>Mining - history</topic><topic>plankton</topic><topic>radionuclides</topic><topic>remediation</topic><topic>sediment</topic><topic>Sediments</topic><topic>sulfate-reducing bacteria</topic><topic>Sulfur</topic><topic>Time Factors</topic><topic>trophic relationships</topic><topic>United States Environmental Protection Agency</topic><topic>USA</topic><topic>water</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Watersheds</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suchanek, Thomas H</creatorcontrib><creatorcontrib>Peter J. Richerson</creatorcontrib><creatorcontrib>R. A. Zierenberg</creatorcontrib><creatorcontrib>Collin A. Eagles-Smith</creatorcontrib><creatorcontrib>Darell G. Slotton</creatorcontrib><creatorcontrib>E. James Harner</creatorcontrib><creatorcontrib>David A. Osleger</creatorcontrib><creatorcontrib>Daniel W. Anderson</creatorcontrib><creatorcontrib>Joseph J. Cech Jr</creatorcontrib><creatorcontrib>S. Geoffrey Schladow</creatorcontrib><creatorcontrib>Arthur E. Colwell</creatorcontrib><creatorcontrib>Jeffrey F. Mount</creatorcontrib><creatorcontrib>Peggie S. King</creatorcontrib><creatorcontrib>David P. Adam</creatorcontrib><creatorcontrib>Kenneth J. McElroy</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suchanek, Thomas H</au><au>Peter J. Richerson</au><au>R. A. Zierenberg</au><au>Collin A. Eagles-Smith</au><au>Darell G. Slotton</au><au>E. James Harner</au><au>David A. Osleger</au><au>Daniel W. Anderson</au><au>Joseph J. Cech Jr</au><au>S. Geoffrey Schladow</au><au>Arthur E. Colwell</au><au>Jeffrey F. Mount</au><au>Peggie S. King</au><au>David P. Adam</au><au>Kenneth J. McElroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism</atitle><jtitle>Ecological applications</jtitle><addtitle>Ecol Appl</addtitle><date>2008-12</date><risdate>2008</risdate><volume>18</volume><issue>8</issue><spage>A12</spage><epage>A28</epage><pages>A12-A28</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><abstract>Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in ∼100 Mg of Hg entering the lake's ecosystem. This series of papers represents the culmination of ∼15 years of Hg‐related studies on this ecosystem, following Hg from the ore body to the highest trophic levels. A series of physical, chemical, biological, and limnological studies elucidate how ongoing Hg loading to the lake is influenced by acid mine drainage and how wind‐driven currents and baroclinic circulation patterns redistribute Hg throughout the lake. Methylmercury (MeHg) production in this system is controlled by both sulfate‐reducing bacteria as well as newly identified iron‐reducing bacteria. Sediment cores (dated with dichlorodiphenyldichlorethane [DDD], ²¹⁰Pb, and ¹⁴C) to ∼250 cm depth (representing up to ∼3000 years before present) elucidate a record of total Hg (TotHg) loading to the lake from natural sources and mining and demonstrate how MeHg remains stable at depth within the sediment column for decades to millenia. Core data also identify other stresses that have influenced the Clear Lake Basin especially over the past 150 years. Although Clear Lake is one of the most Hg‐contaminated lakes in the world, biota do not exhibit MeHg concentrations as high as would be predicted based on the gross level of Hg loading. We compare Clear Lake's TotHg and MeHg concentrations with other sites worldwide and suggest several hypotheses to explain why this discrepancy exists. Based on our data, together with state and federal water and sediment quality criteria, we predict potential resulting environmental and human health effects and provide data that can assist remediation efforts.</abstract><cop>United States</cop><pub>Ecological Society of America</pub><pmid>19475916</pmid><doi>10.1890/08-0363.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-0761
ispartof Ecological applications, 2008-12, Vol.18 (8), p.A12-A28
issn 1051-0761
1939-5582
language eng
recordid cdi_proquest_miscellaneous_20350066
source Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects acid mine drainage
Applied ecology
aquatic ecosystems
benthic invertebrates
birds
California
carbon
Chemical Precipitation
Clear Lake
coring
DDD (pesticide)
Ecosystem
fish
Fresh Water - chemistry
Freshwater fishes
History, 19th Century
History, 20th Century
Human Activities
human health
Humans
Lakes
Lakeshores
lead
Lentic systems
Mercury
Mercury - chemistry
Mercury - metabolism
Mercury Poisoning
methylmercury compounds
mine tailings
Mining
Mining - history
plankton
radionuclides
remediation
sediment
Sediments
sulfate-reducing bacteria
Sulfur
Time Factors
trophic relationships
United States Environmental Protection Agency
USA
water
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - metabolism
Watersheds
Wind
title legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=legacy%20of%20mercury%20cycling%20from%20mining%20sources%20in%20an%20aquatic%20ecosystem:%20from%20ore%20to%20organism&rft.jtitle=Ecological%20applications&rft.au=Suchanek,%20Thomas%20H&rft.date=2008-12&rft.volume=18&rft.issue=8&rft.spage=A12&rft.epage=A28&rft.pages=A12-A28&rft.issn=1051-0761&rft.eissn=1939-5582&rft_id=info:doi/10.1890/08-0363.1&rft_dat=%3Cjstor_proqu%3E27645927%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20350066&rft_id=info:pmid/19475916&rft_jstor_id=27645927&rfr_iscdi=true