legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism
Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in â¼100 Mg of Hg entering the lake's ecosystem...
Gespeichert in:
Veröffentlicht in: | Ecological applications 2008-12, Vol.18 (8), p.A12-A28 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A28 |
---|---|
container_issue | 8 |
container_start_page | A12 |
container_title | Ecological applications |
container_volume | 18 |
creator | Suchanek, Thomas H Peter J. Richerson R. A. Zierenberg Collin A. Eagles-Smith Darell G. Slotton E. James Harner David A. Osleger Daniel W. Anderson Joseph J. Cech Jr S. Geoffrey Schladow Arthur E. Colwell Jeffrey F. Mount Peggie S. King David P. Adam Kenneth J. McElroy |
description | Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in â¼100 Mg of Hg entering the lake's ecosystem. This series of papers represents the culmination of â¼15 years of Hgârelated studies on this ecosystem, following Hg from the ore body to the highest trophic levels. A series of physical, chemical, biological, and limnological studies elucidate how ongoing Hg loading to the lake is influenced by acid mine drainage and how windâdriven currents and baroclinic circulation patterns redistribute Hg throughout the lake. Methylmercury (MeHg) production in this system is controlled by both sulfateâreducing bacteria as well as newly identified ironâreducing bacteria. Sediment cores (dated with dichlorodiphenyldichlorethane [DDD], ²¹â°Pb, and ¹â´C) to â¼250 cm depth (representing up to â¼3000 years before present) elucidate a record of total Hg (TotHg) loading to the lake from natural sources and mining and demonstrate how MeHg remains stable at depth within the sediment column for decades to millenia. Core data also identify other stresses that have influenced the Clear Lake Basin especially over the past 150 years. Although Clear Lake is one of the most Hgâcontaminated lakes in the world, biota do not exhibit MeHg concentrations as high as would be predicted based on the gross level of Hg loading. We compare Clear Lake's TotHg and MeHg concentrations with other sites worldwide and suggest several hypotheses to explain why this discrepancy exists. Based on our data, together with state and federal water and sediment quality criteria, we predict potential resulting environmental and human health effects and provide data that can assist remediation efforts. |
doi_str_mv | 10.1890/08-0363.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20350066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27645927</jstor_id><sourcerecordid>27645927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5082-daff9a9b3cc4e79133e67a9cc3ef37f9d6863905ed4d3ccc6ea07066748fac6b3</originalsourceid><addsrcrecordid>eNp1kEtr3TAQhUVpaNK0i_6AtloVunA6kmw9sruEvCCQQJpVF0JXHl0cbCuRbIr_fXXxpV11GJgD852zOIR8YnDGtIEfoCsQUpyxN-SEGWGqptH8bdHQsAqUZMfkfc7PUIZz_o4cM1OrxjB5Qn71uHN-oTHQAZOf00L94vtu3NGQ4kCHbtzrHOfkMdNupK7s6-ymzlP0MS95wuF8hWNCOsVydm7s8vCBHAXXZ_x4uKfk6ery58VNdXd_fXuxuat8A5pXrQvBOLMV3teoDBMCpXLGe4FBqGBaqaUw0GBbt4XxEh0okFLVOjgvt-KUfFtzX1J8nTFPduiyx753I8Y5Ww6igWIo4PcV9CnmnDDYl9QNLi2Wgd03aUHbfZOWFfbLIXTeDtj-Iw_VFUCuwO-ux-X_SfZy88ABNNOPD3rDeDF-Xo3PeYrpr5ErWTeGq_L_uv6Di9btUpft0yMHJgGYltzU4g8Y-ZFl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20350066</pqid></control><display><type>article</type><title>legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Suchanek, Thomas H ; Peter J. Richerson ; R. A. Zierenberg ; Collin A. Eagles-Smith ; Darell G. Slotton ; E. James Harner ; David A. Osleger ; Daniel W. Anderson ; Joseph J. Cech Jr ; S. Geoffrey Schladow ; Arthur E. Colwell ; Jeffrey F. Mount ; Peggie S. King ; David P. Adam ; Kenneth J. McElroy</creator><creatorcontrib>Suchanek, Thomas H ; Peter J. Richerson ; R. A. Zierenberg ; Collin A. Eagles-Smith ; Darell G. Slotton ; E. James Harner ; David A. Osleger ; Daniel W. Anderson ; Joseph J. Cech Jr ; S. Geoffrey Schladow ; Arthur E. Colwell ; Jeffrey F. Mount ; Peggie S. King ; David P. Adam ; Kenneth J. McElroy</creatorcontrib><description>Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in â¼100 Mg of Hg entering the lake's ecosystem. This series of papers represents the culmination of â¼15 years of Hgârelated studies on this ecosystem, following Hg from the ore body to the highest trophic levels. A series of physical, chemical, biological, and limnological studies elucidate how ongoing Hg loading to the lake is influenced by acid mine drainage and how windâdriven currents and baroclinic circulation patterns redistribute Hg throughout the lake. Methylmercury (MeHg) production in this system is controlled by both sulfateâreducing bacteria as well as newly identified ironâreducing bacteria. Sediment cores (dated with dichlorodiphenyldichlorethane [DDD], ²¹â°Pb, and ¹â´C) to â¼250 cm depth (representing up to â¼3000 years before present) elucidate a record of total Hg (TotHg) loading to the lake from natural sources and mining and demonstrate how MeHg remains stable at depth within the sediment column for decades to millenia. Core data also identify other stresses that have influenced the Clear Lake Basin especially over the past 150 years. Although Clear Lake is one of the most Hgâcontaminated lakes in the world, biota do not exhibit MeHg concentrations as high as would be predicted based on the gross level of Hg loading. We compare Clear Lake's TotHg and MeHg concentrations with other sites worldwide and suggest several hypotheses to explain why this discrepancy exists. Based on our data, together with state and federal water and sediment quality criteria, we predict potential resulting environmental and human health effects and provide data that can assist remediation efforts.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.1890/08-0363.1</identifier><identifier>PMID: 19475916</identifier><language>eng</language><publisher>United States: Ecological Society of America</publisher><subject>acid mine drainage ; Applied ecology ; aquatic ecosystems ; benthic invertebrates ; birds ; California ; carbon ; Chemical Precipitation ; Clear Lake ; coring ; DDD (pesticide) ; Ecosystem ; fish ; Fresh Water - chemistry ; Freshwater fishes ; History, 19th Century ; History, 20th Century ; Human Activities ; human health ; Humans ; Lakes ; Lakeshores ; lead ; Lentic systems ; Mercury ; Mercury - chemistry ; Mercury - metabolism ; Mercury Poisoning ; methylmercury compounds ; mine tailings ; Mining ; Mining - history ; plankton ; radionuclides ; remediation ; sediment ; Sediments ; sulfate-reducing bacteria ; Sulfur ; Time Factors ; trophic relationships ; United States Environmental Protection Agency ; USA ; water ; Water Pollutants, Chemical - chemistry ; Water Pollutants, Chemical - metabolism ; Watersheds ; Wind</subject><ispartof>Ecological applications, 2008-12, Vol.18 (8), p.A12-A28</ispartof><rights>Copyright 2008 Ecological Society of America</rights><rights>2008 by the Ecological Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5082-daff9a9b3cc4e79133e67a9cc3ef37f9d6863905ed4d3ccc6ea07066748fac6b3</citedby><cites>FETCH-LOGICAL-c5082-daff9a9b3cc4e79133e67a9cc3ef37f9d6863905ed4d3ccc6ea07066748fac6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27645927$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27645927$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19475916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suchanek, Thomas H</creatorcontrib><creatorcontrib>Peter J. Richerson</creatorcontrib><creatorcontrib>R. A. Zierenberg</creatorcontrib><creatorcontrib>Collin A. Eagles-Smith</creatorcontrib><creatorcontrib>Darell G. Slotton</creatorcontrib><creatorcontrib>E. James Harner</creatorcontrib><creatorcontrib>David A. Osleger</creatorcontrib><creatorcontrib>Daniel W. Anderson</creatorcontrib><creatorcontrib>Joseph J. Cech Jr</creatorcontrib><creatorcontrib>S. Geoffrey Schladow</creatorcontrib><creatorcontrib>Arthur E. Colwell</creatorcontrib><creatorcontrib>Jeffrey F. Mount</creatorcontrib><creatorcontrib>Peggie S. King</creatorcontrib><creatorcontrib>David P. Adam</creatorcontrib><creatorcontrib>Kenneth J. McElroy</creatorcontrib><title>legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism</title><title>Ecological applications</title><addtitle>Ecol Appl</addtitle><description>Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in â¼100 Mg of Hg entering the lake's ecosystem. This series of papers represents the culmination of â¼15 years of Hgârelated studies on this ecosystem, following Hg from the ore body to the highest trophic levels. A series of physical, chemical, biological, and limnological studies elucidate how ongoing Hg loading to the lake is influenced by acid mine drainage and how windâdriven currents and baroclinic circulation patterns redistribute Hg throughout the lake. Methylmercury (MeHg) production in this system is controlled by both sulfateâreducing bacteria as well as newly identified ironâreducing bacteria. Sediment cores (dated with dichlorodiphenyldichlorethane [DDD], ²¹â°Pb, and ¹â´C) to â¼250 cm depth (representing up to â¼3000 years before present) elucidate a record of total Hg (TotHg) loading to the lake from natural sources and mining and demonstrate how MeHg remains stable at depth within the sediment column for decades to millenia. Core data also identify other stresses that have influenced the Clear Lake Basin especially over the past 150 years. Although Clear Lake is one of the most Hgâcontaminated lakes in the world, biota do not exhibit MeHg concentrations as high as would be predicted based on the gross level of Hg loading. We compare Clear Lake's TotHg and MeHg concentrations with other sites worldwide and suggest several hypotheses to explain why this discrepancy exists. Based on our data, together with state and federal water and sediment quality criteria, we predict potential resulting environmental and human health effects and provide data that can assist remediation efforts.</description><subject>acid mine drainage</subject><subject>Applied ecology</subject><subject>aquatic ecosystems</subject><subject>benthic invertebrates</subject><subject>birds</subject><subject>California</subject><subject>carbon</subject><subject>Chemical Precipitation</subject><subject>Clear Lake</subject><subject>coring</subject><subject>DDD (pesticide)</subject><subject>Ecosystem</subject><subject>fish</subject><subject>Fresh Water - chemistry</subject><subject>Freshwater fishes</subject><subject>History, 19th Century</subject><subject>History, 20th Century</subject><subject>Human Activities</subject><subject>human health</subject><subject>Humans</subject><subject>Lakes</subject><subject>Lakeshores</subject><subject>lead</subject><subject>Lentic systems</subject><subject>Mercury</subject><subject>Mercury - chemistry</subject><subject>Mercury - metabolism</subject><subject>Mercury Poisoning</subject><subject>methylmercury compounds</subject><subject>mine tailings</subject><subject>Mining</subject><subject>Mining - history</subject><subject>plankton</subject><subject>radionuclides</subject><subject>remediation</subject><subject>sediment</subject><subject>Sediments</subject><subject>sulfate-reducing bacteria</subject><subject>Sulfur</subject><subject>Time Factors</subject><subject>trophic relationships</subject><subject>United States Environmental Protection Agency</subject><subject>USA</subject><subject>water</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Watersheds</subject><subject>Wind</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtr3TAQhUVpaNK0i_6AtloVunA6kmw9sruEvCCQQJpVF0JXHl0cbCuRbIr_fXXxpV11GJgD852zOIR8YnDGtIEfoCsQUpyxN-SEGWGqptH8bdHQsAqUZMfkfc7PUIZz_o4cM1OrxjB5Qn71uHN-oTHQAZOf00L94vtu3NGQ4kCHbtzrHOfkMdNupK7s6-ymzlP0MS95wuF8hWNCOsVydm7s8vCBHAXXZ_x4uKfk6ery58VNdXd_fXuxuat8A5pXrQvBOLMV3teoDBMCpXLGe4FBqGBaqaUw0GBbt4XxEh0okFLVOjgvt-KUfFtzX1J8nTFPduiyx753I8Y5Ww6igWIo4PcV9CnmnDDYl9QNLi2Wgd03aUHbfZOWFfbLIXTeDtj-Iw_VFUCuwO-ux-X_SfZy88ABNNOPD3rDeDF-Xo3PeYrpr5ErWTeGq_L_uv6Di9btUpft0yMHJgGYltzU4g8Y-ZFl</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Suchanek, Thomas H</creator><creator>Peter J. Richerson</creator><creator>R. A. Zierenberg</creator><creator>Collin A. Eagles-Smith</creator><creator>Darell G. Slotton</creator><creator>E. James Harner</creator><creator>David A. Osleger</creator><creator>Daniel W. Anderson</creator><creator>Joseph J. Cech Jr</creator><creator>S. Geoffrey Schladow</creator><creator>Arthur E. Colwell</creator><creator>Jeffrey F. Mount</creator><creator>Peggie S. King</creator><creator>David P. Adam</creator><creator>Kenneth J. McElroy</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>200812</creationdate><title>legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism</title><author>Suchanek, Thomas H ; Peter J. Richerson ; R. A. Zierenberg ; Collin A. Eagles-Smith ; Darell G. Slotton ; E. James Harner ; David A. Osleger ; Daniel W. Anderson ; Joseph J. Cech Jr ; S. Geoffrey Schladow ; Arthur E. Colwell ; Jeffrey F. Mount ; Peggie S. King ; David P. Adam ; Kenneth J. McElroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5082-daff9a9b3cc4e79133e67a9cc3ef37f9d6863905ed4d3ccc6ea07066748fac6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>acid mine drainage</topic><topic>Applied ecology</topic><topic>aquatic ecosystems</topic><topic>benthic invertebrates</topic><topic>birds</topic><topic>California</topic><topic>carbon</topic><topic>Chemical Precipitation</topic><topic>Clear Lake</topic><topic>coring</topic><topic>DDD (pesticide)</topic><topic>Ecosystem</topic><topic>fish</topic><topic>Fresh Water - chemistry</topic><topic>Freshwater fishes</topic><topic>History, 19th Century</topic><topic>History, 20th Century</topic><topic>Human Activities</topic><topic>human health</topic><topic>Humans</topic><topic>Lakes</topic><topic>Lakeshores</topic><topic>lead</topic><topic>Lentic systems</topic><topic>Mercury</topic><topic>Mercury - chemistry</topic><topic>Mercury - metabolism</topic><topic>Mercury Poisoning</topic><topic>methylmercury compounds</topic><topic>mine tailings</topic><topic>Mining</topic><topic>Mining - history</topic><topic>plankton</topic><topic>radionuclides</topic><topic>remediation</topic><topic>sediment</topic><topic>Sediments</topic><topic>sulfate-reducing bacteria</topic><topic>Sulfur</topic><topic>Time Factors</topic><topic>trophic relationships</topic><topic>United States Environmental Protection Agency</topic><topic>USA</topic><topic>water</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Watersheds</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suchanek, Thomas H</creatorcontrib><creatorcontrib>Peter J. Richerson</creatorcontrib><creatorcontrib>R. A. Zierenberg</creatorcontrib><creatorcontrib>Collin A. Eagles-Smith</creatorcontrib><creatorcontrib>Darell G. Slotton</creatorcontrib><creatorcontrib>E. James Harner</creatorcontrib><creatorcontrib>David A. Osleger</creatorcontrib><creatorcontrib>Daniel W. Anderson</creatorcontrib><creatorcontrib>Joseph J. Cech Jr</creatorcontrib><creatorcontrib>S. Geoffrey Schladow</creatorcontrib><creatorcontrib>Arthur E. Colwell</creatorcontrib><creatorcontrib>Jeffrey F. Mount</creatorcontrib><creatorcontrib>Peggie S. King</creatorcontrib><creatorcontrib>David P. Adam</creatorcontrib><creatorcontrib>Kenneth J. McElroy</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suchanek, Thomas H</au><au>Peter J. Richerson</au><au>R. A. Zierenberg</au><au>Collin A. Eagles-Smith</au><au>Darell G. Slotton</au><au>E. James Harner</au><au>David A. Osleger</au><au>Daniel W. Anderson</au><au>Joseph J. Cech Jr</au><au>S. Geoffrey Schladow</au><au>Arthur E. Colwell</au><au>Jeffrey F. Mount</au><au>Peggie S. King</au><au>David P. Adam</au><au>Kenneth J. McElroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism</atitle><jtitle>Ecological applications</jtitle><addtitle>Ecol Appl</addtitle><date>2008-12</date><risdate>2008</risdate><volume>18</volume><issue>8</issue><spage>A12</spage><epage>A28</epage><pages>A12-A28</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><abstract>Clear Lake is the site of an abandoned mercury (Hg) mine (active intermittently from 1873 to 1957), now a U.S. Environmental Protection Agency Superfund Site. Mining activities, including bulldozing waste rock and tailings into the lake, resulted in â¼100 Mg of Hg entering the lake's ecosystem. This series of papers represents the culmination of â¼15 years of Hgârelated studies on this ecosystem, following Hg from the ore body to the highest trophic levels. A series of physical, chemical, biological, and limnological studies elucidate how ongoing Hg loading to the lake is influenced by acid mine drainage and how windâdriven currents and baroclinic circulation patterns redistribute Hg throughout the lake. Methylmercury (MeHg) production in this system is controlled by both sulfateâreducing bacteria as well as newly identified ironâreducing bacteria. Sediment cores (dated with dichlorodiphenyldichlorethane [DDD], ²¹â°Pb, and ¹â´C) to â¼250 cm depth (representing up to â¼3000 years before present) elucidate a record of total Hg (TotHg) loading to the lake from natural sources and mining and demonstrate how MeHg remains stable at depth within the sediment column for decades to millenia. Core data also identify other stresses that have influenced the Clear Lake Basin especially over the past 150 years. Although Clear Lake is one of the most Hgâcontaminated lakes in the world, biota do not exhibit MeHg concentrations as high as would be predicted based on the gross level of Hg loading. We compare Clear Lake's TotHg and MeHg concentrations with other sites worldwide and suggest several hypotheses to explain why this discrepancy exists. Based on our data, together with state and federal water and sediment quality criteria, we predict potential resulting environmental and human health effects and provide data that can assist remediation efforts.</abstract><cop>United States</cop><pub>Ecological Society of America</pub><pmid>19475916</pmid><doi>10.1890/08-0363.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-0761 |
ispartof | Ecological applications, 2008-12, Vol.18 (8), p.A12-A28 |
issn | 1051-0761 1939-5582 |
language | eng |
recordid | cdi_proquest_miscellaneous_20350066 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | acid mine drainage Applied ecology aquatic ecosystems benthic invertebrates birds California carbon Chemical Precipitation Clear Lake coring DDD (pesticide) Ecosystem fish Fresh Water - chemistry Freshwater fishes History, 19th Century History, 20th Century Human Activities human health Humans Lakes Lakeshores lead Lentic systems Mercury Mercury - chemistry Mercury - metabolism Mercury Poisoning methylmercury compounds mine tailings Mining Mining - history plankton radionuclides remediation sediment Sediments sulfate-reducing bacteria Sulfur Time Factors trophic relationships United States Environmental Protection Agency USA water Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - metabolism Watersheds Wind |
title | legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=legacy%20of%20mercury%20cycling%20from%20mining%20sources%20in%20an%20aquatic%20ecosystem:%20from%20ore%20to%20organism&rft.jtitle=Ecological%20applications&rft.au=Suchanek,%20Thomas%20H&rft.date=2008-12&rft.volume=18&rft.issue=8&rft.spage=A12&rft.epage=A28&rft.pages=A12-A28&rft.issn=1051-0761&rft.eissn=1939-5582&rft_id=info:doi/10.1890/08-0363.1&rft_dat=%3Cjstor_proqu%3E27645927%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20350066&rft_id=info:pmid/19475916&rft_jstor_id=27645927&rfr_iscdi=true |