Lifetimes of small bodies in planetocentric (or heliocentric) orbits
Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with tim...
Gespeichert in:
Veröffentlicht in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 2007-06, Vol.188 (2), p.481-505 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 2 |
container_start_page | 481 |
container_title | Icarus (New York, N.Y. 1962) |
container_volume | 188 |
creator | Dobrovolskis, Anthony R. Alvarellos, José L. Lissauer, Jack J. |
description | Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with time. Previous studies of planetesimals, comets, asteroids, meteorites, and impact ejecta from planets or satellites have fit the number of survivors
S vs elapsed time
t using exponential, logarithmic, and power laws, but no entirely satisfactory functional form has been found yet. Herein we model the removal rates of impact ejecta from various moons of Jupiter, Saturn, and Neptune. We find that most situations are fit best by stretched exponential decay, of the form
S
(
t
)
=
S
(
0
)
exp
(
−
[
t
/
t
0
]
β
)
. Here
t
0
is the time when the initial population has declined by a factor of
e
≈
2.72
, while the dimensionless exponent
β lies between 0 and 1 (often near 1/3). The
e-folding time
S
[
d
S
/
d
t
]
−1
itself grows as the
[
1
−
β
]
power of
t. This behavior is suggestive of a diffusion-like process. |
doi_str_mv | 10.1016/j.icarus.2006.11.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20348137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103506004453</els_id><sourcerecordid>20348137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-54a6e59ff1cbcdf822ba114b63391c01f5c055fbdf8fbaae9b38ea433bec23743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9KHponWnatL0Isn7Cghc9hySdYJZusyZdwX9vl6548zTMzPPOx8vYOUKGgOJmlTmjwjZmOYDIEDPIiwM2Q2ggzUXBD9kMAJsUgZfH7CTGFQCUdcNn7H7pLA1uTTHxNolr1XWJ9q0bc9cnm071NHhD_RCcSa58SD6oc7-F68QH7YZ4yo6s6iKd7eOcvT8-vC2e0-Xr08vibpkaLqohLQslqGysRaNNa-s81wqx0ILzBg2gLQ2UpdVjy2qlqNG8JlVwrsnkvCr4nF1OczfBf24pDnLtoqFud6XfRpkDL2rk1QgWE2iCjzGQlZvg1ip8SwS5s0yu5GSZ3FkmEeVo2Si72M9X0ajOBtUbF_-0dVVXIMTI3U4cjc9-OQoyGke9odYFMoNsvft_0Q-TLoSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20348137</pqid></control><display><type>article</type><title>Lifetimes of small bodies in planetocentric (or heliocentric) orbits</title><source>Elsevier ScienceDirect Journals</source><creator>Dobrovolskis, Anthony R. ; Alvarellos, José L. ; Lissauer, Jack J.</creator><creatorcontrib>Dobrovolskis, Anthony R. ; Alvarellos, José L. ; Lissauer, Jack J.</creatorcontrib><description>Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with time. Previous studies of planetesimals, comets, asteroids, meteorites, and impact ejecta from planets or satellites have fit the number of survivors
S vs elapsed time
t using exponential, logarithmic, and power laws, but no entirely satisfactory functional form has been found yet. Herein we model the removal rates of impact ejecta from various moons of Jupiter, Saturn, and Neptune. We find that most situations are fit best by stretched exponential decay, of the form
S
(
t
)
=
S
(
0
)
exp
(
−
[
t
/
t
0
]
β
)
. Here
t
0
is the time when the initial population has declined by a factor of
e
≈
2.72
, while the dimensionless exponent
β lies between 0 and 1 (often near 1/3). The
e-folding time
S
[
d
S
/
d
t
]
−1
itself grows as the
[
1
−
β
]
power of
t. This behavior is suggestive of a diffusion-like process.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2006.11.024</identifier><identifier>CODEN: ICRSA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Astronomy ; Celestial mechanics ; Earth, ocean, space ; Exact sciences and technology ; Solar system</subject><ispartof>Icarus (New York, N.Y. 1962), 2007-06, Vol.188 (2), p.481-505</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-54a6e59ff1cbcdf822ba114b63391c01f5c055fbdf8fbaae9b38ea433bec23743</citedby><cites>FETCH-LOGICAL-c367t-54a6e59ff1cbcdf822ba114b63391c01f5c055fbdf8fbaae9b38ea433bec23743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icarus.2006.11.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18787066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dobrovolskis, Anthony R.</creatorcontrib><creatorcontrib>Alvarellos, José L.</creatorcontrib><creatorcontrib>Lissauer, Jack J.</creatorcontrib><title>Lifetimes of small bodies in planetocentric (or heliocentric) orbits</title><title>Icarus (New York, N.Y. 1962)</title><description>Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with time. Previous studies of planetesimals, comets, asteroids, meteorites, and impact ejecta from planets or satellites have fit the number of survivors
S vs elapsed time
t using exponential, logarithmic, and power laws, but no entirely satisfactory functional form has been found yet. Herein we model the removal rates of impact ejecta from various moons of Jupiter, Saturn, and Neptune. We find that most situations are fit best by stretched exponential decay, of the form
S
(
t
)
=
S
(
0
)
exp
(
−
[
t
/
t
0
]
β
)
. Here
t
0
is the time when the initial population has declined by a factor of
e
≈
2.72
, while the dimensionless exponent
β lies between 0 and 1 (often near 1/3). The
e-folding time
S
[
d
S
/
d
t
]
−1
itself grows as the
[
1
−
β
]
power of
t. This behavior is suggestive of a diffusion-like process.</description><subject>Astronomy</subject><subject>Celestial mechanics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Solar system</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9KHponWnatL0Isn7Cghc9hySdYJZusyZdwX9vl6548zTMzPPOx8vYOUKGgOJmlTmjwjZmOYDIEDPIiwM2Q2ggzUXBD9kMAJsUgZfH7CTGFQCUdcNn7H7pLA1uTTHxNolr1XWJ9q0bc9cnm071NHhD_RCcSa58SD6oc7-F68QH7YZ4yo6s6iKd7eOcvT8-vC2e0-Xr08vibpkaLqohLQslqGysRaNNa-s81wqx0ILzBg2gLQ2UpdVjy2qlqNG8JlVwrsnkvCr4nF1OczfBf24pDnLtoqFud6XfRpkDL2rk1QgWE2iCjzGQlZvg1ip8SwS5s0yu5GSZ3FkmEeVo2Si72M9X0ajOBtUbF_-0dVVXIMTI3U4cjc9-OQoyGke9odYFMoNsvft_0Q-TLoSC</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Dobrovolskis, Anthony R.</creator><creator>Alvarellos, José L.</creator><creator>Lissauer, Jack J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20070601</creationdate><title>Lifetimes of small bodies in planetocentric (or heliocentric) orbits</title><author>Dobrovolskis, Anthony R. ; Alvarellos, José L. ; Lissauer, Jack J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-54a6e59ff1cbcdf822ba114b63391c01f5c055fbdf8fbaae9b38ea433bec23743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Astronomy</topic><topic>Celestial mechanics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Solar system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobrovolskis, Anthony R.</creatorcontrib><creatorcontrib>Alvarellos, José L.</creatorcontrib><creatorcontrib>Lissauer, Jack J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobrovolskis, Anthony R.</au><au>Alvarellos, José L.</au><au>Lissauer, Jack J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifetimes of small bodies in planetocentric (or heliocentric) orbits</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>188</volume><issue>2</issue><spage>481</spage><epage>505</epage><pages>481-505</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><coden>ICRSA5</coden><abstract>Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with time. Previous studies of planetesimals, comets, asteroids, meteorites, and impact ejecta from planets or satellites have fit the number of survivors
S vs elapsed time
t using exponential, logarithmic, and power laws, but no entirely satisfactory functional form has been found yet. Herein we model the removal rates of impact ejecta from various moons of Jupiter, Saturn, and Neptune. We find that most situations are fit best by stretched exponential decay, of the form
S
(
t
)
=
S
(
0
)
exp
(
−
[
t
/
t
0
]
β
)
. Here
t
0
is the time when the initial population has declined by a factor of
e
≈
2.72
, while the dimensionless exponent
β lies between 0 and 1 (often near 1/3). The
e-folding time
S
[
d
S
/
d
t
]
−1
itself grows as the
[
1
−
β
]
power of
t. This behavior is suggestive of a diffusion-like process.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2006.11.024</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-1035 |
ispartof | Icarus (New York, N.Y. 1962), 2007-06, Vol.188 (2), p.481-505 |
issn | 0019-1035 1090-2643 |
language | eng |
recordid | cdi_proquest_miscellaneous_20348137 |
source | Elsevier ScienceDirect Journals |
subjects | Astronomy Celestial mechanics Earth, ocean, space Exact sciences and technology Solar system |
title | Lifetimes of small bodies in planetocentric (or heliocentric) orbits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifetimes%20of%20small%20bodies%20in%20planetocentric%20(or%20heliocentric)%20orbits&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Dobrovolskis,%20Anthony%20R.&rft.date=2007-06-01&rft.volume=188&rft.issue=2&rft.spage=481&rft.epage=505&rft.pages=481-505&rft.issn=0019-1035&rft.eissn=1090-2643&rft.coden=ICRSA5&rft_id=info:doi/10.1016/j.icarus.2006.11.024&rft_dat=%3Cproquest_cross%3E20348137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20348137&rft_id=info:pmid/&rft_els_id=S0019103506004453&rfr_iscdi=true |