Lifetimes of small bodies in planetocentric (or heliocentric) orbits

Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2007-06, Vol.188 (2), p.481-505
Hauptverfasser: Dobrovolskis, Anthony R., Alvarellos, José L., Lissauer, Jack J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 2
container_start_page 481
container_title Icarus (New York, N.Y. 1962)
container_volume 188
creator Dobrovolskis, Anthony R.
Alvarellos, José L.
Lissauer, Jack J.
description Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with time. Previous studies of planetesimals, comets, asteroids, meteorites, and impact ejecta from planets or satellites have fit the number of survivors S vs elapsed time t using exponential, logarithmic, and power laws, but no entirely satisfactory functional form has been found yet. Herein we model the removal rates of impact ejecta from various moons of Jupiter, Saturn, and Neptune. We find that most situations are fit best by stretched exponential decay, of the form S ( t ) = S ( 0 ) exp ( − [ t / t 0 ] β ) . Here t 0 is the time when the initial population has declined by a factor of e ≈ 2.72 , while the dimensionless exponent β lies between 0 and 1 (often near 1/3). The e-folding time S [ d S / d t ] −1 itself grows as the [ 1 − β ] power of t. This behavior is suggestive of a diffusion-like process.
doi_str_mv 10.1016/j.icarus.2006.11.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20348137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103506004453</els_id><sourcerecordid>20348137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-54a6e59ff1cbcdf822ba114b63391c01f5c055fbdf8fbaae9b38ea433bec23743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9KHponWnatL0Isn7Cghc9hySdYJZusyZdwX9vl6548zTMzPPOx8vYOUKGgOJmlTmjwjZmOYDIEDPIiwM2Q2ggzUXBD9kMAJsUgZfH7CTGFQCUdcNn7H7pLA1uTTHxNolr1XWJ9q0bc9cnm071NHhD_RCcSa58SD6oc7-F68QH7YZ4yo6s6iKd7eOcvT8-vC2e0-Xr08vibpkaLqohLQslqGysRaNNa-s81wqx0ILzBg2gLQ2UpdVjy2qlqNG8JlVwrsnkvCr4nF1OczfBf24pDnLtoqFud6XfRpkDL2rk1QgWE2iCjzGQlZvg1ip8SwS5s0yu5GSZ3FkmEeVo2Si72M9X0ajOBtUbF_-0dVVXIMTI3U4cjc9-OQoyGke9odYFMoNsvft_0Q-TLoSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20348137</pqid></control><display><type>article</type><title>Lifetimes of small bodies in planetocentric (or heliocentric) orbits</title><source>Elsevier ScienceDirect Journals</source><creator>Dobrovolskis, Anthony R. ; Alvarellos, José L. ; Lissauer, Jack J.</creator><creatorcontrib>Dobrovolskis, Anthony R. ; Alvarellos, José L. ; Lissauer, Jack J.</creatorcontrib><description>Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with time. Previous studies of planetesimals, comets, asteroids, meteorites, and impact ejecta from planets or satellites have fit the number of survivors S vs elapsed time t using exponential, logarithmic, and power laws, but no entirely satisfactory functional form has been found yet. Herein we model the removal rates of impact ejecta from various moons of Jupiter, Saturn, and Neptune. We find that most situations are fit best by stretched exponential decay, of the form S ( t ) = S ( 0 ) exp ( − [ t / t 0 ] β ) . Here t 0 is the time when the initial population has declined by a factor of e ≈ 2.72 , while the dimensionless exponent β lies between 0 and 1 (often near 1/3). The e-folding time S [ d S / d t ] −1 itself grows as the [ 1 − β ] power of t. This behavior is suggestive of a diffusion-like process.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2006.11.024</identifier><identifier>CODEN: ICRSA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Astronomy ; Celestial mechanics ; Earth, ocean, space ; Exact sciences and technology ; Solar system</subject><ispartof>Icarus (New York, N.Y. 1962), 2007-06, Vol.188 (2), p.481-505</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-54a6e59ff1cbcdf822ba114b63391c01f5c055fbdf8fbaae9b38ea433bec23743</citedby><cites>FETCH-LOGICAL-c367t-54a6e59ff1cbcdf822ba114b63391c01f5c055fbdf8fbaae9b38ea433bec23743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icarus.2006.11.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18787066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dobrovolskis, Anthony R.</creatorcontrib><creatorcontrib>Alvarellos, José L.</creatorcontrib><creatorcontrib>Lissauer, Jack J.</creatorcontrib><title>Lifetimes of small bodies in planetocentric (or heliocentric) orbits</title><title>Icarus (New York, N.Y. 1962)</title><description>Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with time. Previous studies of planetesimals, comets, asteroids, meteorites, and impact ejecta from planets or satellites have fit the number of survivors S vs elapsed time t using exponential, logarithmic, and power laws, but no entirely satisfactory functional form has been found yet. Herein we model the removal rates of impact ejecta from various moons of Jupiter, Saturn, and Neptune. We find that most situations are fit best by stretched exponential decay, of the form S ( t ) = S ( 0 ) exp ( − [ t / t 0 ] β ) . Here t 0 is the time when the initial population has declined by a factor of e ≈ 2.72 , while the dimensionless exponent β lies between 0 and 1 (often near 1/3). The e-folding time S [ d S / d t ] −1 itself grows as the [ 1 − β ] power of t. This behavior is suggestive of a diffusion-like process.</description><subject>Astronomy</subject><subject>Celestial mechanics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Solar system</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9KHponWnatL0Isn7Cghc9hySdYJZusyZdwX9vl6548zTMzPPOx8vYOUKGgOJmlTmjwjZmOYDIEDPIiwM2Q2ggzUXBD9kMAJsUgZfH7CTGFQCUdcNn7H7pLA1uTTHxNolr1XWJ9q0bc9cnm071NHhD_RCcSa58SD6oc7-F68QH7YZ4yo6s6iKd7eOcvT8-vC2e0-Xr08vibpkaLqohLQslqGysRaNNa-s81wqx0ILzBg2gLQ2UpdVjy2qlqNG8JlVwrsnkvCr4nF1OczfBf24pDnLtoqFud6XfRpkDL2rk1QgWE2iCjzGQlZvg1ip8SwS5s0yu5GSZ3FkmEeVo2Si72M9X0ajOBtUbF_-0dVVXIMTI3U4cjc9-OQoyGke9odYFMoNsvft_0Q-TLoSC</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Dobrovolskis, Anthony R.</creator><creator>Alvarellos, José L.</creator><creator>Lissauer, Jack J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20070601</creationdate><title>Lifetimes of small bodies in planetocentric (or heliocentric) orbits</title><author>Dobrovolskis, Anthony R. ; Alvarellos, José L. ; Lissauer, Jack J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-54a6e59ff1cbcdf822ba114b63391c01f5c055fbdf8fbaae9b38ea433bec23743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Astronomy</topic><topic>Celestial mechanics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Solar system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobrovolskis, Anthony R.</creatorcontrib><creatorcontrib>Alvarellos, José L.</creatorcontrib><creatorcontrib>Lissauer, Jack J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobrovolskis, Anthony R.</au><au>Alvarellos, José L.</au><au>Lissauer, Jack J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifetimes of small bodies in planetocentric (or heliocentric) orbits</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>188</volume><issue>2</issue><spage>481</spage><epage>505</epage><pages>481-505</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><coden>ICRSA5</coden><abstract>Stray bodies orbiting a planet or the Sun are removed by collisions with larger objects or by expulsion from the system. However, their rate of removal generally cannot be described by the simple exponential law used to describe radioactive decay, because their effective half-life lengthens with time. Previous studies of planetesimals, comets, asteroids, meteorites, and impact ejecta from planets or satellites have fit the number of survivors S vs elapsed time t using exponential, logarithmic, and power laws, but no entirely satisfactory functional form has been found yet. Herein we model the removal rates of impact ejecta from various moons of Jupiter, Saturn, and Neptune. We find that most situations are fit best by stretched exponential decay, of the form S ( t ) = S ( 0 ) exp ( − [ t / t 0 ] β ) . Here t 0 is the time when the initial population has declined by a factor of e ≈ 2.72 , while the dimensionless exponent β lies between 0 and 1 (often near 1/3). The e-folding time S [ d S / d t ] −1 itself grows as the [ 1 − β ] power of t. This behavior is suggestive of a diffusion-like process.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2006.11.024</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-1035
ispartof Icarus (New York, N.Y. 1962), 2007-06, Vol.188 (2), p.481-505
issn 0019-1035
1090-2643
language eng
recordid cdi_proquest_miscellaneous_20348137
source Elsevier ScienceDirect Journals
subjects Astronomy
Celestial mechanics
Earth, ocean, space
Exact sciences and technology
Solar system
title Lifetimes of small bodies in planetocentric (or heliocentric) orbits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifetimes%20of%20small%20bodies%20in%20planetocentric%20(or%20heliocentric)%20orbits&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Dobrovolskis,%20Anthony%20R.&rft.date=2007-06-01&rft.volume=188&rft.issue=2&rft.spage=481&rft.epage=505&rft.pages=481-505&rft.issn=0019-1035&rft.eissn=1090-2643&rft.coden=ICRSA5&rft_id=info:doi/10.1016/j.icarus.2006.11.024&rft_dat=%3Cproquest_cross%3E20348137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20348137&rft_id=info:pmid/&rft_els_id=S0019103506004453&rfr_iscdi=true