Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature
Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is there...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2018-06, Vol.24 (35), p.8742-8746 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8746 |
---|---|
container_issue | 35 |
container_start_page | 8742 |
container_title | Chemistry : a European journal |
container_volume | 24 |
creator | Yu, Lin Sato, Katsutoshi Toriyama, Takaaki Yamamoto, Tomokazu Matsumura, Syo Nagaoka, Katsutoshi |
description | Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre‐reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre‐reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre‐reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ‐Al2O3. In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2. The result was very low activity.
Sustainable chemistry: Crystal structure of TiO2 support is critical for catalytic activity of Rh/TiO2 catalysts in propane pre‐reforming. Strong metal support interaction (SMSI) induced during H2 pre‐reduction was optimized over Rh/TiO2 with rutile structure, and the catalyst catalyzed the reaction effectively. In contrast, Rh/TiO2 with anatase structure showed very low activity due to too strong SMSI (see figure). |
doi_str_mv | 10.1002/chem.201800936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2033382064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033382064</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3926-672b1eea5e68587bf9184b6fa57206dc8d7fc8e6bb1c70c2abf76c0258ed33663</originalsourceid><addsrcrecordid>eNpdkU1P20AQhlcIBCHlyrFaiUsvhv3wfviIIlqQglLR9Gyt12OyyB_peg31X-BXsyaQA6fRzPvondG8CJ1TckkJYVd2A80lI1QTknF5gGZUMJpwJcUhmpEsVYkUPDtBp33_RCIjOT9GJyxTVAnGZ-j1rq3qAVoLuKtw2ABe-LEPpsZ_gh9sGPy7sHbBtG5o8Oq_K-Ok3aEmgmNwFl_b4J5dGCf2YXO1diuGXRs9wDT4AarON659nNTfvtuaFrAJeNm94DU0W_Bm2vMNHVWm7uHso87R358368Vtslz9ultcL5NHnjGZSMUKCmAESC20KqqM6rSQlRGKEVlaXarKapBFQa0ilpmiUtISJjSUnEvJ5-jHznfru38D9CFvXG-hruNZ3dDnjHDOdfRKI3rxBX3qBt_G6yIlVJpqHt87R98_qKFooMy33jXGj_nnlyOQ7YAXV8O41ynJpwzzKcN8n2G-uL2533f8DYhNj-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057448365</pqid></control><display><type>article</type><title>Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Lin ; Sato, Katsutoshi ; Toriyama, Takaaki ; Yamamoto, Tomokazu ; Matsumura, Syo ; Nagaoka, Katsutoshi</creator><creatorcontrib>Yu, Lin ; Sato, Katsutoshi ; Toriyama, Takaaki ; Yamamoto, Tomokazu ; Matsumura, Syo ; Nagaoka, Katsutoshi</creatorcontrib><description>Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre‐reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre‐reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre‐reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ‐Al2O3. In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2. The result was very low activity.
Sustainable chemistry: Crystal structure of TiO2 support is critical for catalytic activity of Rh/TiO2 catalysts in propane pre‐reforming. Strong metal support interaction (SMSI) induced during H2 pre‐reduction was optimized over Rh/TiO2 with rutile structure, and the catalyst catalyzed the reaction effectively. In contrast, Rh/TiO2 with anatase structure showed very low activity due to too strong SMSI (see figure).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201800936</identifier><identifier>PMID: 29717523</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Anatase ; Carbon dioxide ; Carbon dioxide emissions ; Catalysis ; Catalysts ; Catalytic activity ; Chemistry ; Coking ; Crystal structure ; Energy conversion efficiency ; Fuel cells ; Fuel technology ; heterogeneous catalysis ; Hydrocarbons ; Liquefied petroleum gas ; Low temperature ; Natural gas ; Propane ; Reforming ; Rhodium ; rutile ; Solid oxide fuel cells ; Steam ; steam reforming ; sustainable chemistry ; Titanium dioxide ; Titanium oxide ; Titanium oxides</subject><ispartof>Chemistry : a European journal, 2018-06, Vol.24 (35), p.8742-8746</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1774-1537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201800936$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201800936$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29717523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Lin</creatorcontrib><creatorcontrib>Sato, Katsutoshi</creatorcontrib><creatorcontrib>Toriyama, Takaaki</creatorcontrib><creatorcontrib>Yamamoto, Tomokazu</creatorcontrib><creatorcontrib>Matsumura, Syo</creatorcontrib><creatorcontrib>Nagaoka, Katsutoshi</creatorcontrib><title>Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre‐reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre‐reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre‐reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ‐Al2O3. In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2. The result was very low activity.
Sustainable chemistry: Crystal structure of TiO2 support is critical for catalytic activity of Rh/TiO2 catalysts in propane pre‐reforming. Strong metal support interaction (SMSI) induced during H2 pre‐reduction was optimized over Rh/TiO2 with rutile structure, and the catalyst catalyzed the reaction effectively. In contrast, Rh/TiO2 with anatase structure showed very low activity due to too strong SMSI (see figure).</description><subject>Aluminum oxide</subject><subject>Anatase</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Coking</subject><subject>Crystal structure</subject><subject>Energy conversion efficiency</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>heterogeneous catalysis</subject><subject>Hydrocarbons</subject><subject>Liquefied petroleum gas</subject><subject>Low temperature</subject><subject>Natural gas</subject><subject>Propane</subject><subject>Reforming</subject><subject>Rhodium</subject><subject>rutile</subject><subject>Solid oxide fuel cells</subject><subject>Steam</subject><subject>steam reforming</subject><subject>sustainable chemistry</subject><subject>Titanium dioxide</subject><subject>Titanium oxide</subject><subject>Titanium oxides</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU1P20AQhlcIBCHlyrFaiUsvhv3wfviIIlqQglLR9Gyt12OyyB_peg31X-BXsyaQA6fRzPvondG8CJ1TckkJYVd2A80lI1QTknF5gGZUMJpwJcUhmpEsVYkUPDtBp33_RCIjOT9GJyxTVAnGZ-j1rq3qAVoLuKtw2ABe-LEPpsZ_gh9sGPy7sHbBtG5o8Oq_K-Ok3aEmgmNwFl_b4J5dGCf2YXO1diuGXRs9wDT4AarON659nNTfvtuaFrAJeNm94DU0W_Bm2vMNHVWm7uHso87R358368Vtslz9ultcL5NHnjGZSMUKCmAESC20KqqM6rSQlRGKEVlaXarKapBFQa0ilpmiUtISJjSUnEvJ5-jHznfru38D9CFvXG-hruNZ3dDnjHDOdfRKI3rxBX3qBt_G6yIlVJpqHt87R98_qKFooMy33jXGj_nnlyOQ7YAXV8O41ynJpwzzKcN8n2G-uL2533f8DYhNj-M</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Yu, Lin</creator><creator>Sato, Katsutoshi</creator><creator>Toriyama, Takaaki</creator><creator>Yamamoto, Tomokazu</creator><creator>Matsumura, Syo</creator><creator>Nagaoka, Katsutoshi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1774-1537</orcidid></search><sort><creationdate>20180621</creationdate><title>Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature</title><author>Yu, Lin ; Sato, Katsutoshi ; Toriyama, Takaaki ; Yamamoto, Tomokazu ; Matsumura, Syo ; Nagaoka, Katsutoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3926-672b1eea5e68587bf9184b6fa57206dc8d7fc8e6bb1c70c2abf76c0258ed33663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum oxide</topic><topic>Anatase</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Coking</topic><topic>Crystal structure</topic><topic>Energy conversion efficiency</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>heterogeneous catalysis</topic><topic>Hydrocarbons</topic><topic>Liquefied petroleum gas</topic><topic>Low temperature</topic><topic>Natural gas</topic><topic>Propane</topic><topic>Reforming</topic><topic>Rhodium</topic><topic>rutile</topic><topic>Solid oxide fuel cells</topic><topic>Steam</topic><topic>steam reforming</topic><topic>sustainable chemistry</topic><topic>Titanium dioxide</topic><topic>Titanium oxide</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lin</creatorcontrib><creatorcontrib>Sato, Katsutoshi</creatorcontrib><creatorcontrib>Toriyama, Takaaki</creatorcontrib><creatorcontrib>Yamamoto, Tomokazu</creatorcontrib><creatorcontrib>Matsumura, Syo</creatorcontrib><creatorcontrib>Nagaoka, Katsutoshi</creatorcontrib><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lin</au><au>Sato, Katsutoshi</au><au>Toriyama, Takaaki</au><au>Yamamoto, Tomokazu</au><au>Matsumura, Syo</au><au>Nagaoka, Katsutoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-06-21</date><risdate>2018</risdate><volume>24</volume><issue>35</issue><spage>8742</spage><epage>8746</epage><pages>8742-8746</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre‐reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre‐reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre‐reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ‐Al2O3. In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2. The result was very low activity.
Sustainable chemistry: Crystal structure of TiO2 support is critical for catalytic activity of Rh/TiO2 catalysts in propane pre‐reforming. Strong metal support interaction (SMSI) induced during H2 pre‐reduction was optimized over Rh/TiO2 with rutile structure, and the catalyst catalyzed the reaction effectively. In contrast, Rh/TiO2 with anatase structure showed very low activity due to too strong SMSI (see figure).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29717523</pmid><doi>10.1002/chem.201800936</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1774-1537</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2018-06, Vol.24 (35), p.8742-8746 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2033382064 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum oxide Anatase Carbon dioxide Carbon dioxide emissions Catalysis Catalysts Catalytic activity Chemistry Coking Crystal structure Energy conversion efficiency Fuel cells Fuel technology heterogeneous catalysis Hydrocarbons Liquefied petroleum gas Low temperature Natural gas Propane Reforming Rhodium rutile Solid oxide fuel cells Steam steam reforming sustainable chemistry Titanium dioxide Titanium oxide Titanium oxides |
title | Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20Crystal%20Structure%20of%20Titanium%20Oxide%20on%20the%20Catalytic%20Activity%20of%20Rh/TiO2%20in%20Steam%20Reforming%20of%20Propane%20at%20Low%20Temperature&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Yu,%20Lin&rft.date=2018-06-21&rft.volume=24&rft.issue=35&rft.spage=8742&rft.epage=8746&rft.pages=8742-8746&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201800936&rft_dat=%3Cproquest_pubme%3E2033382064%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057448365&rft_id=info:pmid/29717523&rfr_iscdi=true |