Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature

Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2018-06, Vol.24 (35), p.8742-8746
Hauptverfasser: Yu, Lin, Sato, Katsutoshi, Toriyama, Takaaki, Yamamoto, Tomokazu, Matsumura, Syo, Nagaoka, Katsutoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8746
container_issue 35
container_start_page 8742
container_title Chemistry : a European journal
container_volume 24
creator Yu, Lin
Sato, Katsutoshi
Toriyama, Takaaki
Yamamoto, Tomokazu
Matsumura, Syo
Nagaoka, Katsutoshi
description Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre‐reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre‐reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre‐reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ‐Al2O3. In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2. The result was very low activity. Sustainable chemistry: Crystal structure of TiO2 support is critical for catalytic activity of Rh/TiO2 catalysts in propane pre‐reforming. Strong metal support interaction (SMSI) induced during H2 pre‐reduction was optimized over Rh/TiO2 with rutile structure, and the catalyst catalyzed the reaction effectively. In contrast, Rh/TiO2 with anatase structure showed very low activity due to too strong SMSI (see figure).
doi_str_mv 10.1002/chem.201800936
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2033382064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033382064</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3926-672b1eea5e68587bf9184b6fa57206dc8d7fc8e6bb1c70c2abf76c0258ed33663</originalsourceid><addsrcrecordid>eNpdkU1P20AQhlcIBCHlyrFaiUsvhv3wfviIIlqQglLR9Gyt12OyyB_peg31X-BXsyaQA6fRzPvondG8CJ1TckkJYVd2A80lI1QTknF5gGZUMJpwJcUhmpEsVYkUPDtBp33_RCIjOT9GJyxTVAnGZ-j1rq3qAVoLuKtw2ABe-LEPpsZ_gh9sGPy7sHbBtG5o8Oq_K-Ok3aEmgmNwFl_b4J5dGCf2YXO1diuGXRs9wDT4AarON659nNTfvtuaFrAJeNm94DU0W_Bm2vMNHVWm7uHso87R358368Vtslz9ultcL5NHnjGZSMUKCmAESC20KqqM6rSQlRGKEVlaXarKapBFQa0ilpmiUtISJjSUnEvJ5-jHznfru38D9CFvXG-hruNZ3dDnjHDOdfRKI3rxBX3qBt_G6yIlVJpqHt87R98_qKFooMy33jXGj_nnlyOQ7YAXV8O41ynJpwzzKcN8n2G-uL2533f8DYhNj-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057448365</pqid></control><display><type>article</type><title>Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Lin ; Sato, Katsutoshi ; Toriyama, Takaaki ; Yamamoto, Tomokazu ; Matsumura, Syo ; Nagaoka, Katsutoshi</creator><creatorcontrib>Yu, Lin ; Sato, Katsutoshi ; Toriyama, Takaaki ; Yamamoto, Tomokazu ; Matsumura, Syo ; Nagaoka, Katsutoshi</creatorcontrib><description>Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre‐reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre‐reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre‐reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ‐Al2O3. In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2. The result was very low activity. Sustainable chemistry: Crystal structure of TiO2 support is critical for catalytic activity of Rh/TiO2 catalysts in propane pre‐reforming. Strong metal support interaction (SMSI) induced during H2 pre‐reduction was optimized over Rh/TiO2 with rutile structure, and the catalyst catalyzed the reaction effectively. In contrast, Rh/TiO2 with anatase structure showed very low activity due to too strong SMSI (see figure).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201800936</identifier><identifier>PMID: 29717523</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Anatase ; Carbon dioxide ; Carbon dioxide emissions ; Catalysis ; Catalysts ; Catalytic activity ; Chemistry ; Coking ; Crystal structure ; Energy conversion efficiency ; Fuel cells ; Fuel technology ; heterogeneous catalysis ; Hydrocarbons ; Liquefied petroleum gas ; Low temperature ; Natural gas ; Propane ; Reforming ; Rhodium ; rutile ; Solid oxide fuel cells ; Steam ; steam reforming ; sustainable chemistry ; Titanium dioxide ; Titanium oxide ; Titanium oxides</subject><ispartof>Chemistry : a European journal, 2018-06, Vol.24 (35), p.8742-8746</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1774-1537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201800936$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201800936$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29717523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Lin</creatorcontrib><creatorcontrib>Sato, Katsutoshi</creatorcontrib><creatorcontrib>Toriyama, Takaaki</creatorcontrib><creatorcontrib>Yamamoto, Tomokazu</creatorcontrib><creatorcontrib>Matsumura, Syo</creatorcontrib><creatorcontrib>Nagaoka, Katsutoshi</creatorcontrib><title>Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre‐reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre‐reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre‐reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ‐Al2O3. In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2. The result was very low activity. Sustainable chemistry: Crystal structure of TiO2 support is critical for catalytic activity of Rh/TiO2 catalysts in propane pre‐reforming. Strong metal support interaction (SMSI) induced during H2 pre‐reduction was optimized over Rh/TiO2 with rutile structure, and the catalyst catalyzed the reaction effectively. In contrast, Rh/TiO2 with anatase structure showed very low activity due to too strong SMSI (see figure).</description><subject>Aluminum oxide</subject><subject>Anatase</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Coking</subject><subject>Crystal structure</subject><subject>Energy conversion efficiency</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>heterogeneous catalysis</subject><subject>Hydrocarbons</subject><subject>Liquefied petroleum gas</subject><subject>Low temperature</subject><subject>Natural gas</subject><subject>Propane</subject><subject>Reforming</subject><subject>Rhodium</subject><subject>rutile</subject><subject>Solid oxide fuel cells</subject><subject>Steam</subject><subject>steam reforming</subject><subject>sustainable chemistry</subject><subject>Titanium dioxide</subject><subject>Titanium oxide</subject><subject>Titanium oxides</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU1P20AQhlcIBCHlyrFaiUsvhv3wfviIIlqQglLR9Gyt12OyyB_peg31X-BXsyaQA6fRzPvondG8CJ1TckkJYVd2A80lI1QTknF5gGZUMJpwJcUhmpEsVYkUPDtBp33_RCIjOT9GJyxTVAnGZ-j1rq3qAVoLuKtw2ABe-LEPpsZ_gh9sGPy7sHbBtG5o8Oq_K-Ok3aEmgmNwFl_b4J5dGCf2YXO1diuGXRs9wDT4AarON659nNTfvtuaFrAJeNm94DU0W_Bm2vMNHVWm7uHso87R358368Vtslz9ultcL5NHnjGZSMUKCmAESC20KqqM6rSQlRGKEVlaXarKapBFQa0ilpmiUtISJjSUnEvJ5-jHznfru38D9CFvXG-hruNZ3dDnjHDOdfRKI3rxBX3qBt_G6yIlVJpqHt87R98_qKFooMy33jXGj_nnlyOQ7YAXV8O41ynJpwzzKcN8n2G-uL2533f8DYhNj-M</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Yu, Lin</creator><creator>Sato, Katsutoshi</creator><creator>Toriyama, Takaaki</creator><creator>Yamamoto, Tomokazu</creator><creator>Matsumura, Syo</creator><creator>Nagaoka, Katsutoshi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1774-1537</orcidid></search><sort><creationdate>20180621</creationdate><title>Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature</title><author>Yu, Lin ; Sato, Katsutoshi ; Toriyama, Takaaki ; Yamamoto, Tomokazu ; Matsumura, Syo ; Nagaoka, Katsutoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3926-672b1eea5e68587bf9184b6fa57206dc8d7fc8e6bb1c70c2abf76c0258ed33663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum oxide</topic><topic>Anatase</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Coking</topic><topic>Crystal structure</topic><topic>Energy conversion efficiency</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>heterogeneous catalysis</topic><topic>Hydrocarbons</topic><topic>Liquefied petroleum gas</topic><topic>Low temperature</topic><topic>Natural gas</topic><topic>Propane</topic><topic>Reforming</topic><topic>Rhodium</topic><topic>rutile</topic><topic>Solid oxide fuel cells</topic><topic>Steam</topic><topic>steam reforming</topic><topic>sustainable chemistry</topic><topic>Titanium dioxide</topic><topic>Titanium oxide</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lin</creatorcontrib><creatorcontrib>Sato, Katsutoshi</creatorcontrib><creatorcontrib>Toriyama, Takaaki</creatorcontrib><creatorcontrib>Yamamoto, Tomokazu</creatorcontrib><creatorcontrib>Matsumura, Syo</creatorcontrib><creatorcontrib>Nagaoka, Katsutoshi</creatorcontrib><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lin</au><au>Sato, Katsutoshi</au><au>Toriyama, Takaaki</au><au>Yamamoto, Tomokazu</au><au>Matsumura, Syo</au><au>Nagaoka, Katsutoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-06-21</date><risdate>2018</risdate><volume>24</volume><issue>35</issue><spage>8742</spage><epage>8746</epage><pages>8742-8746</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high‐energy‐conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C−C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre‐reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre‐reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre‐reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ‐Al2O3. In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2. The result was very low activity. Sustainable chemistry: Crystal structure of TiO2 support is critical for catalytic activity of Rh/TiO2 catalysts in propane pre‐reforming. Strong metal support interaction (SMSI) induced during H2 pre‐reduction was optimized over Rh/TiO2 with rutile structure, and the catalyst catalyzed the reaction effectively. In contrast, Rh/TiO2 with anatase structure showed very low activity due to too strong SMSI (see figure).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29717523</pmid><doi>10.1002/chem.201800936</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1774-1537</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2018-06, Vol.24 (35), p.8742-8746
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2033382064
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Anatase
Carbon dioxide
Carbon dioxide emissions
Catalysis
Catalysts
Catalytic activity
Chemistry
Coking
Crystal structure
Energy conversion efficiency
Fuel cells
Fuel technology
heterogeneous catalysis
Hydrocarbons
Liquefied petroleum gas
Low temperature
Natural gas
Propane
Reforming
Rhodium
rutile
Solid oxide fuel cells
Steam
steam reforming
sustainable chemistry
Titanium dioxide
Titanium oxide
Titanium oxides
title Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20Crystal%20Structure%20of%20Titanium%20Oxide%20on%20the%20Catalytic%20Activity%20of%20Rh/TiO2%20in%20Steam%20Reforming%20of%20Propane%20at%20Low%20Temperature&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Yu,%20Lin&rft.date=2018-06-21&rft.volume=24&rft.issue=35&rft.spage=8742&rft.epage=8746&rft.pages=8742-8746&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201800936&rft_dat=%3Cproquest_pubme%3E2033382064%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057448365&rft_id=info:pmid/29717523&rfr_iscdi=true