Fluorescent characteristic and compositional change of dissolved organic matter and its effect on heavy metal distribution in composting leachates

Composting leachates were collected to investigate the fluorescent characteristic and compositional change of dissolved organic matter (DOM) and the effects of the DOM and nutrients on heavy metal distribution during a leachate combination treatment process. Excitation-emission matrix (EEM) fluoresc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2018-07, Vol.25 (19), p.18866-18878
Hauptverfasser: Yuan, Dong-Hai, An, Ye-Chen, He, Xiao-Song, Yan, Chen-Ling, Jia, Yu-Pai, Wang, Hao-Tian, He, Lian-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Composting leachates were collected to investigate the fluorescent characteristic and compositional change of dissolved organic matter (DOM) and the effects of the DOM and nutrients on heavy metal distribution during a leachate combination treatment process. Excitation-emission matrix (EEM) fluorescence spectra showed that, with the progress of the treatment units, the content of fulvic-like, humic-like, and protein-like substances gradually decreased. One fulvic-like component (C1), three humic-like components (C2, C3, and C4), and three protein-like components (C5, C6, and C7) were identified in the leachate DOM by parallel factor analysis. Anaerobic-aerobic processes removed a large fraction of the tyrosine-like component (C7) and tryptophan-like component (C6) and a small amount of humic-like component (C2), while the membrane bioreactor showed a good removal effect on protein-like component. The ultra-filtration membrane treatment had a removal effect on fulvic-like and humic-like component and other recalcitrant compounds, while the reverse osmosis treatment had a good removal effect on both humic-like and protein-like components. Correlation analysis indicated that Mn and Cr were primarily associated with protein-like components and nutrients in the composting leachates. Ni and Pb were bound to fulvic-like, humic-like, and protein-like components, Co and Zn interacted with inorganic nitrogen and total phosphorus, and Cd only interacted with inorganic nitrogen.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-018-2067-2