Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces

The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-06, Vol.30 (25), p.e1800598-n/a
Hauptverfasser: Zhao, Siwei, Tseng, Peter, Grasman, Jonathan, Wang, Yu, Li, Wenyi, Napier, Bradley, Yavuz, Burcin, Chen, Ying, Howell, Laurel, Rincon, Javier, Omenetto, Fiorenzo G., Kaplan, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page e1800598
container_title Advanced materials (Weinheim)
container_volume 30
creator Zhao, Siwei
Tseng, Peter
Grasman, Jonathan
Wang, Yu
Li, Wenyi
Napier, Bradley
Yavuz, Burcin
Chen, Ying
Howell, Laurel
Rincon, Javier
Omenetto, Fiorenzo G.
Kaplan, David L.
description The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two‐phase systems are utilized to generate programmable hydrogel ionic circuits. High‐conductivity salt‐solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous‐based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light‐emitting diode (LED)‐based displays, skin‐mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. Programmable hydrogel ionic circuits completely composed of salt, water, and biofriendly hydrogels are developed based on salt/poly(ethylene glycol) aqueous two‐phase systems. Such systems enable designer electronics that match the properties of biological systems and route high‐resolution ionic electrical signals between engineered and living systems while avoiding tissue damage. Such platforms may form the basis of future biointegrated electronic systems.
doi_str_mv 10.1002/adma.201800598
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2033380306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2055648890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-bfe90dd6ec152cd4ff0acd9739e2f0a1b756ba4a0edca02d9821d988f7cddb6c3</originalsourceid><addsrcrecordid>eNqFkMtLxDAQh4Mouj6uHqXgxUvXSR9pclzXxy4oCuq5pMlUK-lGkxbpf2_WXVfw4mUe8M2P4SPkmMKYAiTnUrdynADlALngW2RE84TGGYh8m4xApHksWMb3yL73bwAgGLBdspeIghaF4CPy-ODsi5NtKyuD0WzQYUUTze2iUdG0capvOh_V1kUXjTX2pVHSmCG6k516RR1dGVSd-4bniw5dLRX6Q7JTS-PxaN0PyPP11dN0Ft_e38ynk9tYZQXjcVWjAK0ZqvCz0lldg1RaFKnAJIy0KnJWyUwCaiUh0YInNBReF0rriqn0gJytct-d_ejRd2XbeIXGyAXa3pcJpGnKIQUW0NM_6Jvt3SJ8F6g8D4q4gECNV5Ry1nuHdfnumla6oaRQLnWXS93lRnc4OFnH9lWLeoP_-A2AWAGfjcHhn7hycnk3-Q3_AnjkjRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055648890</pqid></control><display><type>article</type><title>Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Siwei ; Tseng, Peter ; Grasman, Jonathan ; Wang, Yu ; Li, Wenyi ; Napier, Bradley ; Yavuz, Burcin ; Chen, Ying ; Howell, Laurel ; Rincon, Javier ; Omenetto, Fiorenzo G. ; Kaplan, David L.</creator><creatorcontrib>Zhao, Siwei ; Tseng, Peter ; Grasman, Jonathan ; Wang, Yu ; Li, Wenyi ; Napier, Bradley ; Yavuz, Burcin ; Chen, Ying ; Howell, Laurel ; Rincon, Javier ; Omenetto, Fiorenzo G. ; Kaplan, David L.</creatorcontrib><description>The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two‐phase systems are utilized to generate programmable hydrogel ionic circuits. High‐conductivity salt‐solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous‐based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light‐emitting diode (LED)‐based displays, skin‐mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. Programmable hydrogel ionic circuits completely composed of salt, water, and biofriendly hydrogels are developed based on salt/poly(ethylene glycol) aqueous two‐phase systems. Such systems enable designer electronics that match the properties of biological systems and route high‐resolution ionic electrical signals between engineered and living systems while avoiding tissue damage. Such platforms may form the basis of future biointegrated electronic systems.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201800598</identifier><identifier>PMID: 29717798</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>aqueous two‐phase systems ; Biocompatible Materials ; Bioelectricity ; bioelectronics ; Circuits ; Electric power distribution ; Electrical resistivity ; Electronic systems ; Electronics ; Hydrogel, Polyethylene Glycol Dimethacrylate ; Hydrogels ; Hydrogels - chemistry ; ionic circuits ; Ions ; Light emitting diodes ; Medical devices ; Medical electronics ; Muscles ; Pain ; Phase separation ; poly(ethylene glycol) ; Polyethylene glycol ; Polyethylene Glycols ; Prostheses and Implants ; Skin ; Stimulation ; Stimulators ; Stretchability ; Surgical implants ; Tissues</subject><ispartof>Advanced materials (Weinheim), 2018-06, Vol.30 (25), p.e1800598-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-bfe90dd6ec152cd4ff0acd9739e2f0a1b756ba4a0edca02d9821d988f7cddb6c3</citedby><cites>FETCH-LOGICAL-c4768-bfe90dd6ec152cd4ff0acd9739e2f0a1b756ba4a0edca02d9821d988f7cddb6c3</cites><orcidid>0000-0002-9245-7774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201800598$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201800598$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29717798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Siwei</creatorcontrib><creatorcontrib>Tseng, Peter</creatorcontrib><creatorcontrib>Grasman, Jonathan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Napier, Bradley</creatorcontrib><creatorcontrib>Yavuz, Burcin</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Howell, Laurel</creatorcontrib><creatorcontrib>Rincon, Javier</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><title>Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two‐phase systems are utilized to generate programmable hydrogel ionic circuits. High‐conductivity salt‐solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous‐based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light‐emitting diode (LED)‐based displays, skin‐mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. Programmable hydrogel ionic circuits completely composed of salt, water, and biofriendly hydrogels are developed based on salt/poly(ethylene glycol) aqueous two‐phase systems. Such systems enable designer electronics that match the properties of biological systems and route high‐resolution ionic electrical signals between engineered and living systems while avoiding tissue damage. Such platforms may form the basis of future biointegrated electronic systems.</description><subject>aqueous two‐phase systems</subject><subject>Biocompatible Materials</subject><subject>Bioelectricity</subject><subject>bioelectronics</subject><subject>Circuits</subject><subject>Electric power distribution</subject><subject>Electrical resistivity</subject><subject>Electronic systems</subject><subject>Electronics</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>ionic circuits</subject><subject>Ions</subject><subject>Light emitting diodes</subject><subject>Medical devices</subject><subject>Medical electronics</subject><subject>Muscles</subject><subject>Pain</subject><subject>Phase separation</subject><subject>poly(ethylene glycol)</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols</subject><subject>Prostheses and Implants</subject><subject>Skin</subject><subject>Stimulation</subject><subject>Stimulators</subject><subject>Stretchability</subject><subject>Surgical implants</subject><subject>Tissues</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtLxDAQh4Mouj6uHqXgxUvXSR9pclzXxy4oCuq5pMlUK-lGkxbpf2_WXVfw4mUe8M2P4SPkmMKYAiTnUrdynADlALngW2RE84TGGYh8m4xApHksWMb3yL73bwAgGLBdspeIghaF4CPy-ODsi5NtKyuD0WzQYUUTze2iUdG0capvOh_V1kUXjTX2pVHSmCG6k516RR1dGVSd-4bniw5dLRX6Q7JTS-PxaN0PyPP11dN0Ft_e38ynk9tYZQXjcVWjAK0ZqvCz0lldg1RaFKnAJIy0KnJWyUwCaiUh0YInNBReF0rriqn0gJytct-d_ejRd2XbeIXGyAXa3pcJpGnKIQUW0NM_6Jvt3SJ8F6g8D4q4gECNV5Ry1nuHdfnumla6oaRQLnWXS93lRnc4OFnH9lWLeoP_-A2AWAGfjcHhn7hycnk3-Q3_AnjkjRk</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Zhao, Siwei</creator><creator>Tseng, Peter</creator><creator>Grasman, Jonathan</creator><creator>Wang, Yu</creator><creator>Li, Wenyi</creator><creator>Napier, Bradley</creator><creator>Yavuz, Burcin</creator><creator>Chen, Ying</creator><creator>Howell, Laurel</creator><creator>Rincon, Javier</creator><creator>Omenetto, Fiorenzo G.</creator><creator>Kaplan, David L.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid></search><sort><creationdate>201806</creationdate><title>Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces</title><author>Zhao, Siwei ; Tseng, Peter ; Grasman, Jonathan ; Wang, Yu ; Li, Wenyi ; Napier, Bradley ; Yavuz, Burcin ; Chen, Ying ; Howell, Laurel ; Rincon, Javier ; Omenetto, Fiorenzo G. ; Kaplan, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-bfe90dd6ec152cd4ff0acd9739e2f0a1b756ba4a0edca02d9821d988f7cddb6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aqueous two‐phase systems</topic><topic>Biocompatible Materials</topic><topic>Bioelectricity</topic><topic>bioelectronics</topic><topic>Circuits</topic><topic>Electric power distribution</topic><topic>Electrical resistivity</topic><topic>Electronic systems</topic><topic>Electronics</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>ionic circuits</topic><topic>Ions</topic><topic>Light emitting diodes</topic><topic>Medical devices</topic><topic>Medical electronics</topic><topic>Muscles</topic><topic>Pain</topic><topic>Phase separation</topic><topic>poly(ethylene glycol)</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols</topic><topic>Prostheses and Implants</topic><topic>Skin</topic><topic>Stimulation</topic><topic>Stimulators</topic><topic>Stretchability</topic><topic>Surgical implants</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Siwei</creatorcontrib><creatorcontrib>Tseng, Peter</creatorcontrib><creatorcontrib>Grasman, Jonathan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Napier, Bradley</creatorcontrib><creatorcontrib>Yavuz, Burcin</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Howell, Laurel</creatorcontrib><creatorcontrib>Rincon, Javier</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Siwei</au><au>Tseng, Peter</au><au>Grasman, Jonathan</au><au>Wang, Yu</au><au>Li, Wenyi</au><au>Napier, Bradley</au><au>Yavuz, Burcin</au><au>Chen, Ying</au><au>Howell, Laurel</au><au>Rincon, Javier</au><au>Omenetto, Fiorenzo G.</au><au>Kaplan, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-06</date><risdate>2018</risdate><volume>30</volume><issue>25</issue><spage>e1800598</spage><epage>n/a</epage><pages>e1800598-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two‐phase systems are utilized to generate programmable hydrogel ionic circuits. High‐conductivity salt‐solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous‐based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light‐emitting diode (LED)‐based displays, skin‐mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. Programmable hydrogel ionic circuits completely composed of salt, water, and biofriendly hydrogels are developed based on salt/poly(ethylene glycol) aqueous two‐phase systems. Such systems enable designer electronics that match the properties of biological systems and route high‐resolution ionic electrical signals between engineered and living systems while avoiding tissue damage. Such platforms may form the basis of future biointegrated electronic systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29717798</pmid><doi>10.1002/adma.201800598</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-06, Vol.30 (25), p.e1800598-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2033380306
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects aqueous two‐phase systems
Biocompatible Materials
Bioelectricity
bioelectronics
Circuits
Electric power distribution
Electrical resistivity
Electronic systems
Electronics
Hydrogel, Polyethylene Glycol Dimethacrylate
Hydrogels
Hydrogels - chemistry
ionic circuits
Ions
Light emitting diodes
Medical devices
Medical electronics
Muscles
Pain
Phase separation
poly(ethylene glycol)
Polyethylene glycol
Polyethylene Glycols
Prostheses and Implants
Skin
Stimulation
Stimulators
Stretchability
Surgical implants
Tissues
title Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20Hydrogel%20Ionic%20Circuits%20for%20Biologically%20Matched%20Electronic%20Interfaces&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhao,%20Siwei&rft.date=2018-06&rft.volume=30&rft.issue=25&rft.spage=e1800598&rft.epage=n/a&rft.pages=e1800598-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201800598&rft_dat=%3Cproquest_cross%3E2055648890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055648890&rft_id=info:pmid/29717798&rfr_iscdi=true