Interferometric profile measurement of optical-thickness by wavelength tuning with suppression of spatially uniform error

Wavelength-tuning interferometry has been widely used for measuring the thickness variation of optical devices used in the semiconductor industry. However, in wavelength-tuning interferometry, the nonlinearity of phase shift causes a spatially uniform error in the calculated phase distribution. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-04, Vol.26 (8), p.10870-10878
Hauptverfasser: Kim, Yangjin, Hibino, Kenichi, Mitsuishi, Mamoru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wavelength-tuning interferometry has been widely used for measuring the thickness variation of optical devices used in the semiconductor industry. However, in wavelength-tuning interferometry, the nonlinearity of phase shift causes a spatially uniform error in the calculated phase distribution. In this study, the spatially uniform error is formulated using Taylor series. A new 9-sample phase-shifting algorithm is proposed, with which the uniform spatial phase error can be eliminated. The characteristics of 9-sample algorithm is discussed using Fourier representation and RMS error analysis. Finally, optical-thickness variation of transparent plate is measured using the proposed algorithm and wavelength-tuning Fizeau interferometer and the error is compared with 7-sample algorithm.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.26.010870