Biocompatible Surface-Coated Probe for in Vivo, in Situ, and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry
Lipidomics is a significant way to understand the structural and functional roles that lipids play in biological systems. Although many mass spectrometry (MS)-based lipidomics strategies have recently achieve remarkable results, in vivo, in situ, and microscale lipidomics for small biological organi...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-06, Vol.90 (11), p.6936-6944 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6944 |
---|---|
container_issue | 11 |
container_start_page | 6936 |
container_title | Analytical chemistry (Washington) |
container_volume | 90 |
creator | Deng, Jiewei Li, Wenying Yang, Qiuxia Liu, Yaohui Fang, Ling Guo, Yunhua Guo, Pengran Lin, Li Yang, Yunyun Luan, Tiangang |
description | Lipidomics is a significant way to understand the structural and functional roles that lipids play in biological systems. Although many mass spectrometry (MS)-based lipidomics strategies have recently achieve remarkable results, in vivo, in situ, and microscale lipidomics for small biological organisms and cells have not yet been obtained. In this article, we report a novel lipidomics methodology for in vivo, in situ, and microscale investigation of small biological organisms and cells using biocompatible surface-coated probe nanoelectrospray ionization mass spectrometry (BSCP-nanoESI-MS). A novel biocompatible surface-coated solid-phase microextration (SPME) probe is prepared, which possesses a probe-end diameter of less than 5 μm and shows excellent enrichment capacity toward lipid species. In vivo extraction of living biological organisms (e.g., zebrafishes), in situ sampling a precise position of small organisms (e.g., Daphnia magna), and even microscale analysis of single eukaryotic cells (e.g., HepG2) are easily achieved by the SPME probe. After extraction, the loaded SPME probe is directly applied for nanoESI-MS analysis, and a high-resolution mass spectrometer is employed for recording spectra and identifying lipid species. Compared with the conventional direct infusion shotgun MS lipidomics, our proposed methodology shows a similar result of lipid profiles but with simpler sample pretreatment, less sample consumption, and shorter analytical times. Lipidomics of zebrafish, Daphnia magna, and HepG2 cell populations were investigated by our proposed BSCP-nanoESI-MS methodology, and abundant lipid compositions were detected and identified and biomarkers were obtained via multivariate statistical analysis. |
doi_str_mv | 10.1021/acs.analchem.8b01218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2032801168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032801168</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-3f47d4c08e58842593c4780e0f6fdb054a636bcde2ca24af024e2eaf3a29ef873</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1ERZfCP0DIEhcOzTJ2nMR7hFUpSFsVaSnXaOKMF1dJHOykUv8Gvxhvd9tDD5w8kr_3ZvQeY-8ELAVI8QlNXOKAnflN_VI3IKTQL9hCFBKyUmv5ki0AIM9kBXDKXsd4CyAEiPIVO5WrCqpVoRbs7xfnje9HnFzTEd_OwaKhbO1xopb_CL4hbn3gbuC_3J0_3w9bN83nHIeWXzkTfDSYlBs3utb3zkTuLd_22HU8eXd-59I_vw47HFzs44NuTV0X-U10w45fYYx8O5KZgu9pCvdv2InFLtLb43vGbr5e_Fx_yzbXl9_XnzcZ5lU5ZblVVasMaCq0VrJY5UZVGghsadsGCoVlXjamJWlQKrQgFUlCm6NckdVVfsY-HnzH4P_MFKe6d9Gky3AgP8daQi51iqzUCf3wDL31c0jhJ0qAEpXUWiRKHah9KDGQrcfgegz3tYB631mdOqsfO6uPnSXZ-6P53PTUPokeS0oAHIC9_Gnxfz3_ATnAptk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104172881</pqid></control><display><type>article</type><title>Biocompatible Surface-Coated Probe for in Vivo, in Situ, and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry</title><source>ACS Publications</source><creator>Deng, Jiewei ; Li, Wenying ; Yang, Qiuxia ; Liu, Yaohui ; Fang, Ling ; Guo, Yunhua ; Guo, Pengran ; Lin, Li ; Yang, Yunyun ; Luan, Tiangang</creator><creatorcontrib>Deng, Jiewei ; Li, Wenying ; Yang, Qiuxia ; Liu, Yaohui ; Fang, Ling ; Guo, Yunhua ; Guo, Pengran ; Lin, Li ; Yang, Yunyun ; Luan, Tiangang</creatorcontrib><description>Lipidomics is a significant way to understand the structural and functional roles that lipids play in biological systems. Although many mass spectrometry (MS)-based lipidomics strategies have recently achieve remarkable results, in vivo, in situ, and microscale lipidomics for small biological organisms and cells have not yet been obtained. In this article, we report a novel lipidomics methodology for in vivo, in situ, and microscale investigation of small biological organisms and cells using biocompatible surface-coated probe nanoelectrospray ionization mass spectrometry (BSCP-nanoESI-MS). A novel biocompatible surface-coated solid-phase microextration (SPME) probe is prepared, which possesses a probe-end diameter of less than 5 μm and shows excellent enrichment capacity toward lipid species. In vivo extraction of living biological organisms (e.g., zebrafishes), in situ sampling a precise position of small organisms (e.g., Daphnia magna), and even microscale analysis of single eukaryotic cells (e.g., HepG2) are easily achieved by the SPME probe. After extraction, the loaded SPME probe is directly applied for nanoESI-MS analysis, and a high-resolution mass spectrometer is employed for recording spectra and identifying lipid species. Compared with the conventional direct infusion shotgun MS lipidomics, our proposed methodology shows a similar result of lipid profiles but with simpler sample pretreatment, less sample consumption, and shorter analytical times. Lipidomics of zebrafish, Daphnia magna, and HepG2 cell populations were investigated by our proposed BSCP-nanoESI-MS methodology, and abundant lipid compositions were detected and identified and biomarkers were obtained via multivariate statistical analysis.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b01218</identifier><identifier>PMID: 29707954</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocompatibility ; Biomarkers ; Cells ; Chemistry ; In vivo methods and tests ; Ionization ; Lipids ; Mass spectrometry ; Methodology ; Microorganisms ; Multivariate statistical analysis ; Organisms ; Pretreatment ; Protective coatings ; Recording ; Solid phases ; Spectroscopy ; Statistical analysis ; Zebrafish</subject><ispartof>Analytical chemistry (Washington), 2018-06, Vol.90 (11), p.6936-6944</ispartof><rights>Copyright American Chemical Society Jun 5, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-3f47d4c08e58842593c4780e0f6fdb054a636bcde2ca24af024e2eaf3a29ef873</citedby><cites>FETCH-LOGICAL-a376t-3f47d4c08e58842593c4780e0f6fdb054a636bcde2ca24af024e2eaf3a29ef873</cites><orcidid>0000-0002-1546-0902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b01218$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b01218$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29707954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Jiewei</creatorcontrib><creatorcontrib>Li, Wenying</creatorcontrib><creatorcontrib>Yang, Qiuxia</creatorcontrib><creatorcontrib>Liu, Yaohui</creatorcontrib><creatorcontrib>Fang, Ling</creatorcontrib><creatorcontrib>Guo, Yunhua</creatorcontrib><creatorcontrib>Guo, Pengran</creatorcontrib><creatorcontrib>Lin, Li</creatorcontrib><creatorcontrib>Yang, Yunyun</creatorcontrib><creatorcontrib>Luan, Tiangang</creatorcontrib><title>Biocompatible Surface-Coated Probe for in Vivo, in Situ, and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Lipidomics is a significant way to understand the structural and functional roles that lipids play in biological systems. Although many mass spectrometry (MS)-based lipidomics strategies have recently achieve remarkable results, in vivo, in situ, and microscale lipidomics for small biological organisms and cells have not yet been obtained. In this article, we report a novel lipidomics methodology for in vivo, in situ, and microscale investigation of small biological organisms and cells using biocompatible surface-coated probe nanoelectrospray ionization mass spectrometry (BSCP-nanoESI-MS). A novel biocompatible surface-coated solid-phase microextration (SPME) probe is prepared, which possesses a probe-end diameter of less than 5 μm and shows excellent enrichment capacity toward lipid species. In vivo extraction of living biological organisms (e.g., zebrafishes), in situ sampling a precise position of small organisms (e.g., Daphnia magna), and even microscale analysis of single eukaryotic cells (e.g., HepG2) are easily achieved by the SPME probe. After extraction, the loaded SPME probe is directly applied for nanoESI-MS analysis, and a high-resolution mass spectrometer is employed for recording spectra and identifying lipid species. Compared with the conventional direct infusion shotgun MS lipidomics, our proposed methodology shows a similar result of lipid profiles but with simpler sample pretreatment, less sample consumption, and shorter analytical times. Lipidomics of zebrafish, Daphnia magna, and HepG2 cell populations were investigated by our proposed BSCP-nanoESI-MS methodology, and abundant lipid compositions were detected and identified and biomarkers were obtained via multivariate statistical analysis.</description><subject>Biocompatibility</subject><subject>Biomarkers</subject><subject>Cells</subject><subject>Chemistry</subject><subject>In vivo methods and tests</subject><subject>Ionization</subject><subject>Lipids</subject><subject>Mass spectrometry</subject><subject>Methodology</subject><subject>Microorganisms</subject><subject>Multivariate statistical analysis</subject><subject>Organisms</subject><subject>Pretreatment</subject><subject>Protective coatings</subject><subject>Recording</subject><subject>Solid phases</subject><subject>Spectroscopy</subject><subject>Statistical analysis</subject><subject>Zebrafish</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS1ERZfCP0DIEhcOzTJ2nMR7hFUpSFsVaSnXaOKMF1dJHOykUv8Gvxhvd9tDD5w8kr_3ZvQeY-8ELAVI8QlNXOKAnflN_VI3IKTQL9hCFBKyUmv5ki0AIM9kBXDKXsd4CyAEiPIVO5WrCqpVoRbs7xfnje9HnFzTEd_OwaKhbO1xopb_CL4hbn3gbuC_3J0_3w9bN83nHIeWXzkTfDSYlBs3utb3zkTuLd_22HU8eXd-59I_vw47HFzs44NuTV0X-U10w45fYYx8O5KZgu9pCvdv2InFLtLb43vGbr5e_Fx_yzbXl9_XnzcZ5lU5ZblVVasMaCq0VrJY5UZVGghsadsGCoVlXjamJWlQKrQgFUlCm6NckdVVfsY-HnzH4P_MFKe6d9Gky3AgP8daQi51iqzUCf3wDL31c0jhJ0qAEpXUWiRKHah9KDGQrcfgegz3tYB631mdOqsfO6uPnSXZ-6P53PTUPokeS0oAHIC9_Gnxfz3_ATnAptk</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Deng, Jiewei</creator><creator>Li, Wenying</creator><creator>Yang, Qiuxia</creator><creator>Liu, Yaohui</creator><creator>Fang, Ling</creator><creator>Guo, Yunhua</creator><creator>Guo, Pengran</creator><creator>Lin, Li</creator><creator>Yang, Yunyun</creator><creator>Luan, Tiangang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1546-0902</orcidid></search><sort><creationdate>20180605</creationdate><title>Biocompatible Surface-Coated Probe for in Vivo, in Situ, and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry</title><author>Deng, Jiewei ; Li, Wenying ; Yang, Qiuxia ; Liu, Yaohui ; Fang, Ling ; Guo, Yunhua ; Guo, Pengran ; Lin, Li ; Yang, Yunyun ; Luan, Tiangang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-3f47d4c08e58842593c4780e0f6fdb054a636bcde2ca24af024e2eaf3a29ef873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biomarkers</topic><topic>Cells</topic><topic>Chemistry</topic><topic>In vivo methods and tests</topic><topic>Ionization</topic><topic>Lipids</topic><topic>Mass spectrometry</topic><topic>Methodology</topic><topic>Microorganisms</topic><topic>Multivariate statistical analysis</topic><topic>Organisms</topic><topic>Pretreatment</topic><topic>Protective coatings</topic><topic>Recording</topic><topic>Solid phases</topic><topic>Spectroscopy</topic><topic>Statistical analysis</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Jiewei</creatorcontrib><creatorcontrib>Li, Wenying</creatorcontrib><creatorcontrib>Yang, Qiuxia</creatorcontrib><creatorcontrib>Liu, Yaohui</creatorcontrib><creatorcontrib>Fang, Ling</creatorcontrib><creatorcontrib>Guo, Yunhua</creatorcontrib><creatorcontrib>Guo, Pengran</creatorcontrib><creatorcontrib>Lin, Li</creatorcontrib><creatorcontrib>Yang, Yunyun</creatorcontrib><creatorcontrib>Luan, Tiangang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Jiewei</au><au>Li, Wenying</au><au>Yang, Qiuxia</au><au>Liu, Yaohui</au><au>Fang, Ling</au><au>Guo, Yunhua</au><au>Guo, Pengran</au><au>Lin, Li</au><au>Yang, Yunyun</au><au>Luan, Tiangang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatible Surface-Coated Probe for in Vivo, in Situ, and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-06-05</date><risdate>2018</risdate><volume>90</volume><issue>11</issue><spage>6936</spage><epage>6944</epage><pages>6936-6944</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Lipidomics is a significant way to understand the structural and functional roles that lipids play in biological systems. Although many mass spectrometry (MS)-based lipidomics strategies have recently achieve remarkable results, in vivo, in situ, and microscale lipidomics for small biological organisms and cells have not yet been obtained. In this article, we report a novel lipidomics methodology for in vivo, in situ, and microscale investigation of small biological organisms and cells using biocompatible surface-coated probe nanoelectrospray ionization mass spectrometry (BSCP-nanoESI-MS). A novel biocompatible surface-coated solid-phase microextration (SPME) probe is prepared, which possesses a probe-end diameter of less than 5 μm and shows excellent enrichment capacity toward lipid species. In vivo extraction of living biological organisms (e.g., zebrafishes), in situ sampling a precise position of small organisms (e.g., Daphnia magna), and even microscale analysis of single eukaryotic cells (e.g., HepG2) are easily achieved by the SPME probe. After extraction, the loaded SPME probe is directly applied for nanoESI-MS analysis, and a high-resolution mass spectrometer is employed for recording spectra and identifying lipid species. Compared with the conventional direct infusion shotgun MS lipidomics, our proposed methodology shows a similar result of lipid profiles but with simpler sample pretreatment, less sample consumption, and shorter analytical times. Lipidomics of zebrafish, Daphnia magna, and HepG2 cell populations were investigated by our proposed BSCP-nanoESI-MS methodology, and abundant lipid compositions were detected and identified and biomarkers were obtained via multivariate statistical analysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29707954</pmid><doi>10.1021/acs.analchem.8b01218</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1546-0902</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2018-06, Vol.90 (11), p.6936-6944 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2032801168 |
source | ACS Publications |
subjects | Biocompatibility Biomarkers Cells Chemistry In vivo methods and tests Ionization Lipids Mass spectrometry Methodology Microorganisms Multivariate statistical analysis Organisms Pretreatment Protective coatings Recording Solid phases Spectroscopy Statistical analysis Zebrafish |
title | Biocompatible Surface-Coated Probe for in Vivo, in Situ, and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatible%20Surface-Coated%20Probe%20for%20in%20Vivo,%20in%20Situ,%20and%20Microscale%20Lipidomics%20of%20Small%20Biological%20Organisms%20and%20Cells%20Using%20Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Deng,%20Jiewei&rft.date=2018-06-05&rft.volume=90&rft.issue=11&rft.spage=6936&rft.epage=6944&rft.pages=6936-6944&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b01218&rft_dat=%3Cproquest_cross%3E2032801168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104172881&rft_id=info:pmid/29707954&rfr_iscdi=true |