Fluorescent Molecular Rotors for Viscosity Sensors

Fluorescent molecular rotors (FMRs) can act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In FMRs, the rotation of rotators connected to a fluorescent π‐conjugated bridge is suppressed by increasing environmental viscosity, resulting in increasing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2018-09, Vol.24 (52), p.13706-13718
Hauptverfasser: Lee, Seung‐Chul, Heo, Jeongyun, Woo, Hee Chul, Lee, Ji‐Ah, Seo, Young Hun, Lee, Chang‐Lyoul, Kim, Sehoon, Kwon, O‐Pil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13718
container_issue 52
container_start_page 13706
container_title Chemistry : a European journal
container_volume 24
creator Lee, Seung‐Chul
Heo, Jeongyun
Woo, Hee Chul
Lee, Ji‐Ah
Seo, Young Hun
Lee, Chang‐Lyoul
Kim, Sehoon
Kwon, O‐Pil
description Fluorescent molecular rotors (FMRs) can act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In FMRs, the rotation of rotators connected to a fluorescent π‐conjugated bridge is suppressed by increasing environmental viscosity, resulting in increasing fluorescence (FL) intensity. In this minireview, we describe recently developed FMRs including push–pull type π‐conjugated chromophores, meso‐phenyl (borondipyrromethene) (BODIPY) derivatives, dioxaborine derivatives, cyanine derivatives, and porphyrin derivatives whose FL mechanism is viscosity‐responsive. In addition, FMR design strategies for addressing various issues (e.g., obtaining high FL contrast, internal FL references, and FL intensity‐contrast trade‐off) and their biological and microfluidic applications are also discussed. Spinning around: This minireview discusses recently developed fluorescent molecular rotors (FMRs), which act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In addition, the mechanism of viscosity‐responsive fluorescence, design strategy of FMRs for addressing remarkable issues, and their various biological and microfluidic applications, are also discussed.
doi_str_mv 10.1002/chem.201801389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2032417646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111769528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4769-b6564ef485624cc3a0f6ed85ce09f525f11536f51c0b12dab98bfff7cd92b99b3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMobk6vHqXgxUvnS9KkyVHG5oSJ4K9raNMEO9plJi2y_96MzQlePD14fO_j8SF0iWGMAcit_jDtmAAWgKmQR2iIGcEpzTk7RkOQWZ5yRuUAnYWwBADJKT1FAyJzACHkEJFZ0ztvgjarLnl0jdF9U_jk2XXOh8Q6n7zXQbtQd5vkxaxC3J6jE1s0wVzs5wi9zaavk3m6eLp_mNwtUp3lXKYlZzwzNhOMk0xrWoDlphJMG5CWEWYxZpRbhjWUmFRFKUVprc11JUkpZUlH6GbnXXv32ZvQqTa-YpqmWBnXB0WAkgznPOMRvf6DLl3vV_E7RTCOjGRERGq8o7R3IXhj1drXbeE3CoPa1lTbmupQMx5c7bV92ZrqgP_ki4DcAV91Yzb_6NRkPn38lX8DF8KAKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111769528</pqid></control><display><type>article</type><title>Fluorescent Molecular Rotors for Viscosity Sensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Seung‐Chul ; Heo, Jeongyun ; Woo, Hee Chul ; Lee, Ji‐Ah ; Seo, Young Hun ; Lee, Chang‐Lyoul ; Kim, Sehoon ; Kwon, O‐Pil</creator><creatorcontrib>Lee, Seung‐Chul ; Heo, Jeongyun ; Woo, Hee Chul ; Lee, Ji‐Ah ; Seo, Young Hun ; Lee, Chang‐Lyoul ; Kim, Sehoon ; Kwon, O‐Pil</creatorcontrib><description>Fluorescent molecular rotors (FMRs) can act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In FMRs, the rotation of rotators connected to a fluorescent π‐conjugated bridge is suppressed by increasing environmental viscosity, resulting in increasing fluorescence (FL) intensity. In this minireview, we describe recently developed FMRs including push–pull type π‐conjugated chromophores, meso‐phenyl (borondipyrromethene) (BODIPY) derivatives, dioxaborine derivatives, cyanine derivatives, and porphyrin derivatives whose FL mechanism is viscosity‐responsive. In addition, FMR design strategies for addressing various issues (e.g., obtaining high FL contrast, internal FL references, and FL intensity‐contrast trade‐off) and their biological and microfluidic applications are also discussed. Spinning around: This minireview discusses recently developed fluorescent molecular rotors (FMRs), which act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In addition, the mechanism of viscosity‐responsive fluorescence, design strategy of FMRs for addressing remarkable issues, and their various biological and microfluidic applications, are also discussed.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201801389</identifier><identifier>PMID: 29700889</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Chromophores ; Derivatives ; Fluorescence ; fluorescence dynamics ; fluorescent molecular rotors ; microviscosity ; molecular rotors ; Organelles ; Rotors ; Sensors ; Viscosity ; viscosity sensors</subject><ispartof>Chemistry : a European journal, 2018-09, Vol.24 (52), p.13706-13718</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4769-b6564ef485624cc3a0f6ed85ce09f525f11536f51c0b12dab98bfff7cd92b99b3</citedby><cites>FETCH-LOGICAL-c4769-b6564ef485624cc3a0f6ed85ce09f525f11536f51c0b12dab98bfff7cd92b99b3</cites><orcidid>0000-0002-7964-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201801389$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201801389$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29700889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Seung‐Chul</creatorcontrib><creatorcontrib>Heo, Jeongyun</creatorcontrib><creatorcontrib>Woo, Hee Chul</creatorcontrib><creatorcontrib>Lee, Ji‐Ah</creatorcontrib><creatorcontrib>Seo, Young Hun</creatorcontrib><creatorcontrib>Lee, Chang‐Lyoul</creatorcontrib><creatorcontrib>Kim, Sehoon</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><title>Fluorescent Molecular Rotors for Viscosity Sensors</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Fluorescent molecular rotors (FMRs) can act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In FMRs, the rotation of rotators connected to a fluorescent π‐conjugated bridge is suppressed by increasing environmental viscosity, resulting in increasing fluorescence (FL) intensity. In this minireview, we describe recently developed FMRs including push–pull type π‐conjugated chromophores, meso‐phenyl (borondipyrromethene) (BODIPY) derivatives, dioxaborine derivatives, cyanine derivatives, and porphyrin derivatives whose FL mechanism is viscosity‐responsive. In addition, FMR design strategies for addressing various issues (e.g., obtaining high FL contrast, internal FL references, and FL intensity‐contrast trade‐off) and their biological and microfluidic applications are also discussed. Spinning around: This minireview discusses recently developed fluorescent molecular rotors (FMRs), which act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In addition, the mechanism of viscosity‐responsive fluorescence, design strategy of FMRs for addressing remarkable issues, and their various biological and microfluidic applications, are also discussed.</description><subject>Chemistry</subject><subject>Chromophores</subject><subject>Derivatives</subject><subject>Fluorescence</subject><subject>fluorescence dynamics</subject><subject>fluorescent molecular rotors</subject><subject>microviscosity</subject><subject>molecular rotors</subject><subject>Organelles</subject><subject>Rotors</subject><subject>Sensors</subject><subject>Viscosity</subject><subject>viscosity sensors</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMobk6vHqXgxUvnS9KkyVHG5oSJ4K9raNMEO9plJi2y_96MzQlePD14fO_j8SF0iWGMAcit_jDtmAAWgKmQR2iIGcEpzTk7RkOQWZ5yRuUAnYWwBADJKT1FAyJzACHkEJFZ0ztvgjarLnl0jdF9U_jk2XXOh8Q6n7zXQbtQd5vkxaxC3J6jE1s0wVzs5wi9zaavk3m6eLp_mNwtUp3lXKYlZzwzNhOMk0xrWoDlphJMG5CWEWYxZpRbhjWUmFRFKUVprc11JUkpZUlH6GbnXXv32ZvQqTa-YpqmWBnXB0WAkgznPOMRvf6DLl3vV_E7RTCOjGRERGq8o7R3IXhj1drXbeE3CoPa1lTbmupQMx5c7bV92ZrqgP_ki4DcAV91Yzb_6NRkPn38lX8DF8KAKw</recordid><startdate>20180918</startdate><enddate>20180918</enddate><creator>Lee, Seung‐Chul</creator><creator>Heo, Jeongyun</creator><creator>Woo, Hee Chul</creator><creator>Lee, Ji‐Ah</creator><creator>Seo, Young Hun</creator><creator>Lee, Chang‐Lyoul</creator><creator>Kim, Sehoon</creator><creator>Kwon, O‐Pil</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></search><sort><creationdate>20180918</creationdate><title>Fluorescent Molecular Rotors for Viscosity Sensors</title><author>Lee, Seung‐Chul ; Heo, Jeongyun ; Woo, Hee Chul ; Lee, Ji‐Ah ; Seo, Young Hun ; Lee, Chang‐Lyoul ; Kim, Sehoon ; Kwon, O‐Pil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4769-b6564ef485624cc3a0f6ed85ce09f525f11536f51c0b12dab98bfff7cd92b99b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Chromophores</topic><topic>Derivatives</topic><topic>Fluorescence</topic><topic>fluorescence dynamics</topic><topic>fluorescent molecular rotors</topic><topic>microviscosity</topic><topic>molecular rotors</topic><topic>Organelles</topic><topic>Rotors</topic><topic>Sensors</topic><topic>Viscosity</topic><topic>viscosity sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seung‐Chul</creatorcontrib><creatorcontrib>Heo, Jeongyun</creatorcontrib><creatorcontrib>Woo, Hee Chul</creatorcontrib><creatorcontrib>Lee, Ji‐Ah</creatorcontrib><creatorcontrib>Seo, Young Hun</creatorcontrib><creatorcontrib>Lee, Chang‐Lyoul</creatorcontrib><creatorcontrib>Kim, Sehoon</creatorcontrib><creatorcontrib>Kwon, O‐Pil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seung‐Chul</au><au>Heo, Jeongyun</au><au>Woo, Hee Chul</au><au>Lee, Ji‐Ah</au><au>Seo, Young Hun</au><au>Lee, Chang‐Lyoul</au><au>Kim, Sehoon</au><au>Kwon, O‐Pil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescent Molecular Rotors for Viscosity Sensors</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-09-18</date><risdate>2018</risdate><volume>24</volume><issue>52</issue><spage>13706</spage><epage>13718</epage><pages>13706-13718</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Fluorescent molecular rotors (FMRs) can act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In FMRs, the rotation of rotators connected to a fluorescent π‐conjugated bridge is suppressed by increasing environmental viscosity, resulting in increasing fluorescence (FL) intensity. In this minireview, we describe recently developed FMRs including push–pull type π‐conjugated chromophores, meso‐phenyl (borondipyrromethene) (BODIPY) derivatives, dioxaborine derivatives, cyanine derivatives, and porphyrin derivatives whose FL mechanism is viscosity‐responsive. In addition, FMR design strategies for addressing various issues (e.g., obtaining high FL contrast, internal FL references, and FL intensity‐contrast trade‐off) and their biological and microfluidic applications are also discussed. Spinning around: This minireview discusses recently developed fluorescent molecular rotors (FMRs), which act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In addition, the mechanism of viscosity‐responsive fluorescence, design strategy of FMRs for addressing remarkable issues, and their various biological and microfluidic applications, are also discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29700889</pmid><doi>10.1002/chem.201801389</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7964-687X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2018-09, Vol.24 (52), p.13706-13718
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2032417646
source Wiley Online Library Journals Frontfile Complete
subjects Chemistry
Chromophores
Derivatives
Fluorescence
fluorescence dynamics
fluorescent molecular rotors
microviscosity
molecular rotors
Organelles
Rotors
Sensors
Viscosity
viscosity sensors
title Fluorescent Molecular Rotors for Viscosity Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescent%20Molecular%20Rotors%20for%20Viscosity%20Sensors&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Lee,%20Seung%E2%80%90Chul&rft.date=2018-09-18&rft.volume=24&rft.issue=52&rft.spage=13706&rft.epage=13718&rft.pages=13706-13718&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201801389&rft_dat=%3Cproquest_cross%3E2111769528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111769528&rft_id=info:pmid/29700889&rfr_iscdi=true