PaMM: Pose-Aware Multi-Shot Matching for Improving Person Re-Identification
Person re-identification is the problem of recognizing people across different images or videos with non-overlapping views. Although a significant progress has been made in person re-identification over the last decade, it remains a challenging task because the appearances of people can seem extreme...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2018-08, Vol.27 (8), p.3739-3752 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3752 |
---|---|
container_issue | 8 |
container_start_page | 3739 |
container_title | IEEE transactions on image processing |
container_volume | 27 |
creator | Cho, Yeong-Jun Yoon, Kuk-Jin |
description | Person re-identification is the problem of recognizing people across different images or videos with non-overlapping views. Although a significant progress has been made in person re-identification over the last decade, it remains a challenging task because the appearances of people can seem extremely different across diverse camera viewpoints and person poses. In this paper, we propose a novel framework for person re-identification by analyzing camera viewpoints and person poses called pose-aware multi-shot matching. It robustly estimates individual poses and efficiently performs multi-shot matching based on the pose information. The experimental results obtained by using public person re-identification data sets show that the proposed methods outperform the current state-of-the-art methods, and are promising for accomplishing person re-identification under diverse viewpoints and pose variances. |
doi_str_mv | 10.1109/TIP.2018.2815840 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2032397694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8315486</ieee_id><sourcerecordid>2032397694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-be94ec7a191d4759ee76ae2eff021e1783af113ddf90fcfc4d57a7f32ebe91ff3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK3eBUFy9JK6s7vJZr2V4kewwaD1HLbJrI3ko-4miv_elNaeZoZ53mF4CLkEOgWg6nYZp1NGIZqyCIJI0CMyBiXAp1Sw46GngfQlCDUiZ859UgoigPCUjJgKVcRoOCbPqU6SOy9tHfqzH23RS_qqK_23ddt5ie7yddl8eKa1XlxvbPu9nVK0rm28V_TjApuuNGWuu7JtzsmJ0ZXDi32dkPeH--X8yV-8PMbz2cLPOajOX6ESmEsNCgohA4UoQ40MjaEMEGTEtQHgRWEUNbnJRRFILQ1nOCTBGD4hN7u7w0NfPbouq0uXY1XpBtveZYxyxpUMlRhQukNz2zpn0WQbW9ba_mZAs63CbFCYbRVme4VD5Hp_vV_VWBwC_84G4GoHlIh4WEccAhGF_A_5dHUf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032397694</pqid></control><display><type>article</type><title>PaMM: Pose-Aware Multi-Shot Matching for Improving Person Re-Identification</title><source>IEEE Electronic Library (IEL)</source><creator>Cho, Yeong-Jun ; Yoon, Kuk-Jin</creator><creatorcontrib>Cho, Yeong-Jun ; Yoon, Kuk-Jin</creatorcontrib><description>Person re-identification is the problem of recognizing people across different images or videos with non-overlapping views. Although a significant progress has been made in person re-identification over the last decade, it remains a challenging task because the appearances of people can seem extremely different across diverse camera viewpoints and person poses. In this paper, we propose a novel framework for person re-identification by analyzing camera viewpoints and person poses called pose-aware multi-shot matching. It robustly estimates individual poses and efficiently performs multi-shot matching based on the pose information. The experimental results obtained by using public person re-identification data sets show that the proposed methods outperform the current state-of-the-art methods, and are promising for accomplishing person re-identification under diverse viewpoints and pose variances.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2815840</identifier><identifier>PMID: 29698206</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cameras ; Feature extraction ; Learning systems ; Measurement ; multi-shot matching ; non-overlapping cameras ; person pose ; Person re-identification ; pose-aware matching method ; Robustness ; Task analysis ; Videos</subject><ispartof>IEEE transactions on image processing, 2018-08, Vol.27 (8), p.3739-3752</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-be94ec7a191d4759ee76ae2eff021e1783af113ddf90fcfc4d57a7f32ebe91ff3</citedby><cites>FETCH-LOGICAL-c319t-be94ec7a191d4759ee76ae2eff021e1783af113ddf90fcfc4d57a7f32ebe91ff3</cites><orcidid>0000-0002-0497-5660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8315486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8315486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29698206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Yeong-Jun</creatorcontrib><creatorcontrib>Yoon, Kuk-Jin</creatorcontrib><title>PaMM: Pose-Aware Multi-Shot Matching for Improving Person Re-Identification</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Person re-identification is the problem of recognizing people across different images or videos with non-overlapping views. Although a significant progress has been made in person re-identification over the last decade, it remains a challenging task because the appearances of people can seem extremely different across diverse camera viewpoints and person poses. In this paper, we propose a novel framework for person re-identification by analyzing camera viewpoints and person poses called pose-aware multi-shot matching. It robustly estimates individual poses and efficiently performs multi-shot matching based on the pose information. The experimental results obtained by using public person re-identification data sets show that the proposed methods outperform the current state-of-the-art methods, and are promising for accomplishing person re-identification under diverse viewpoints and pose variances.</description><subject>Cameras</subject><subject>Feature extraction</subject><subject>Learning systems</subject><subject>Measurement</subject><subject>multi-shot matching</subject><subject>non-overlapping cameras</subject><subject>person pose</subject><subject>Person re-identification</subject><subject>pose-aware matching method</subject><subject>Robustness</subject><subject>Task analysis</subject><subject>Videos</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRbK3eBUFy9JK6s7vJZr2V4kewwaD1HLbJrI3ko-4miv_elNaeZoZ53mF4CLkEOgWg6nYZp1NGIZqyCIJI0CMyBiXAp1Sw46GngfQlCDUiZ859UgoigPCUjJgKVcRoOCbPqU6SOy9tHfqzH23RS_qqK_23ddt5ie7yddl8eKa1XlxvbPu9nVK0rm28V_TjApuuNGWuu7JtzsmJ0ZXDi32dkPeH--X8yV-8PMbz2cLPOajOX6ESmEsNCgohA4UoQ40MjaEMEGTEtQHgRWEUNbnJRRFILQ1nOCTBGD4hN7u7w0NfPbouq0uXY1XpBtveZYxyxpUMlRhQukNz2zpn0WQbW9ba_mZAs63CbFCYbRVme4VD5Hp_vV_VWBwC_84G4GoHlIh4WEccAhGF_A_5dHUf</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Cho, Yeong-Jun</creator><creator>Yoon, Kuk-Jin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0497-5660</orcidid></search><sort><creationdate>201808</creationdate><title>PaMM: Pose-Aware Multi-Shot Matching for Improving Person Re-Identification</title><author>Cho, Yeong-Jun ; Yoon, Kuk-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-be94ec7a191d4759ee76ae2eff021e1783af113ddf90fcfc4d57a7f32ebe91ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cameras</topic><topic>Feature extraction</topic><topic>Learning systems</topic><topic>Measurement</topic><topic>multi-shot matching</topic><topic>non-overlapping cameras</topic><topic>person pose</topic><topic>Person re-identification</topic><topic>pose-aware matching method</topic><topic>Robustness</topic><topic>Task analysis</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yeong-Jun</creatorcontrib><creatorcontrib>Yoon, Kuk-Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Yeong-Jun</au><au>Yoon, Kuk-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PaMM: Pose-Aware Multi-Shot Matching for Improving Person Re-Identification</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-08</date><risdate>2018</risdate><volume>27</volume><issue>8</issue><spage>3739</spage><epage>3752</epage><pages>3739-3752</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Person re-identification is the problem of recognizing people across different images or videos with non-overlapping views. Although a significant progress has been made in person re-identification over the last decade, it remains a challenging task because the appearances of people can seem extremely different across diverse camera viewpoints and person poses. In this paper, we propose a novel framework for person re-identification by analyzing camera viewpoints and person poses called pose-aware multi-shot matching. It robustly estimates individual poses and efficiently performs multi-shot matching based on the pose information. The experimental results obtained by using public person re-identification data sets show that the proposed methods outperform the current state-of-the-art methods, and are promising for accomplishing person re-identification under diverse viewpoints and pose variances.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29698206</pmid><doi>10.1109/TIP.2018.2815840</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0497-5660</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2018-08, Vol.27 (8), p.3739-3752 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_2032397694 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Feature extraction Learning systems Measurement multi-shot matching non-overlapping cameras person pose Person re-identification pose-aware matching method Robustness Task analysis Videos |
title | PaMM: Pose-Aware Multi-Shot Matching for Improving Person Re-Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PaMM:%20Pose-Aware%20Multi-Shot%20Matching%20for%20Improving%20Person%20Re-Identification&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Cho,%20Yeong-Jun&rft.date=2018-08&rft.volume=27&rft.issue=8&rft.spage=3739&rft.epage=3752&rft.pages=3739-3752&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2815840&rft_dat=%3Cproquest_RIE%3E2032397694%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2032397694&rft_id=info:pmid/29698206&rft_ieee_id=8315486&rfr_iscdi=true |