Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia
Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated...
Gespeichert in:
Veröffentlicht in: | Mucosal immunology 2018-07, Vol.11 (4), p.1203-1218 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1218 |
---|---|
container_issue | 4 |
container_start_page | 1203 |
container_title | Mucosal immunology |
container_volume | 11 |
creator | Nakatsuka, Yoshinari Vandenbon, Alexis Mino, Takashi Yoshinaga, Masanori Uehata, Takuya Cui, Xiaotong Sato, Ayuko Tsujimura, Tohru Suzuki, Yutaka Sato, Atsuyasu Handa, Tomohiro Chin, Kazuo Sawa, Teiji Hirai, Toyohiro Takeuchi, Osamu |
description | Inhaled pathogens including
Pseudomonas aeruginosa
initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against
P. aeruginosa
infection. Intratracheal treatment of mice with heat-killed
P. aeruginosa
resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against
P. aeruginosa
but also enhanced secretion of
Pseudomonas
-specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against
P. aeruginosa
re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection. |
doi_str_mv | 10.1038/s41385-018-0024-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2031415707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031415707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-84762c4553d444831b7f172b8adc07008a28cdd23dae1d09bfe548ba5e0cc2063</originalsourceid><addsrcrecordid>eNp1kUtv1TAQhSMEoqXwA9ggS2zYGMavxFmiikelSkWoXVuOPblNlTjBj0r339e3t4CExMqW5ztnZnya5i2DjwyE_pQkE1pRYJoCcEnVs-aU9UJRIVX7_PEuKHDWnzSvUroDaAGUeNmc8L7tlZbstCk_yryswcY9-Ym7YBNSRtbobjHlaDMmkm-RTCFj3Ga7J-tIcJvq2zyVhdjgifV2y9N9hZalBCRpnzIuVbeSLa4ZXSZ2Z6eQMtkCltpssq-bF6OdE755Os-am69frs-_08urbxfnny-pqxtkqmXXcieVEl5KqQUbupF1fNDWO-gAtOXaec-Ft8g89MOISurBKgTnOLTirPlw9K2T_Cp1JbNMyeE824BrSYaDYJKpDrqKvv8HvVtLDHU6c3BqtRaPFDtSLq4pRRzNFqel_p5hYA6ZmGMmpmZiDpkYVTXvnpzLsKD_o_gdQgX4EUi1FHYY_7b-v-sDofuYUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063688307</pqid></control><display><type>article</type><title>Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Nakatsuka, Yoshinari ; Vandenbon, Alexis ; Mino, Takashi ; Yoshinaga, Masanori ; Uehata, Takuya ; Cui, Xiaotong ; Sato, Ayuko ; Tsujimura, Tohru ; Suzuki, Yutaka ; Sato, Atsuyasu ; Handa, Tomohiro ; Chin, Kazuo ; Sawa, Teiji ; Hirai, Toyohiro ; Takeuchi, Osamu</creator><creatorcontrib>Nakatsuka, Yoshinari ; Vandenbon, Alexis ; Mino, Takashi ; Yoshinaga, Masanori ; Uehata, Takuya ; Cui, Xiaotong ; Sato, Ayuko ; Tsujimura, Tohru ; Suzuki, Yutaka ; Sato, Atsuyasu ; Handa, Tomohiro ; Chin, Kazuo ; Sawa, Teiji ; Hirai, Toyohiro ; Takeuchi, Osamu</creatorcontrib><description>Inhaled pathogens including
Pseudomonas aeruginosa
initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against
P. aeruginosa
infection. Intratracheal treatment of mice with heat-killed
P. aeruginosa
resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against
P. aeruginosa
but also enhanced secretion of
Pseudomonas
-specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against
P. aeruginosa
re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.</description><identifier>ISSN: 1933-0219</identifier><identifier>EISSN: 1935-3456</identifier><identifier>DOI: 10.1038/s41385-018-0024-5</identifier><identifier>PMID: 29695841</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adaptive Immunity ; Allergology ; Animals ; Antibodies ; Antibodies, Bacterial - metabolism ; Biodegradation ; Biomedical and Life Sciences ; Biomedicine ; Epithelial cells ; Epithelium ; Gastroenterology ; Helper cells ; Immunity, Innate ; Immunoglobulin A ; Immunoglobulin A - metabolism ; Immunology ; Infections ; Inflammation ; Lung - immunology ; Lung - microbiology ; Lymphocyte Activation ; Lymphocytes T ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; NF-kappa B - metabolism ; NF-κB protein ; Pathogens ; Pneumonia, Bacterial - immunology ; Pseudomonas aeruginosa - physiology ; Pseudomonas Infections - immunology ; Respiratory Mucosa - metabolism ; Ribonucleases - genetics ; Ribonucleases - metabolism ; Signal Transduction ; Th17 Cells - immunology ; Trachea</subject><ispartof>Mucosal immunology, 2018-07, Vol.11 (4), p.1203-1218</ispartof><rights>Society for Mucosal Immunology 2018</rights><rights>Copyright Nature Publishing Group Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-84762c4553d444831b7f172b8adc07008a28cdd23dae1d09bfe548ba5e0cc2063</citedby><cites>FETCH-LOGICAL-c345t-84762c4553d444831b7f172b8adc07008a28cdd23dae1d09bfe548ba5e0cc2063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29695841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakatsuka, Yoshinari</creatorcontrib><creatorcontrib>Vandenbon, Alexis</creatorcontrib><creatorcontrib>Mino, Takashi</creatorcontrib><creatorcontrib>Yoshinaga, Masanori</creatorcontrib><creatorcontrib>Uehata, Takuya</creatorcontrib><creatorcontrib>Cui, Xiaotong</creatorcontrib><creatorcontrib>Sato, Ayuko</creatorcontrib><creatorcontrib>Tsujimura, Tohru</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Sato, Atsuyasu</creatorcontrib><creatorcontrib>Handa, Tomohiro</creatorcontrib><creatorcontrib>Chin, Kazuo</creatorcontrib><creatorcontrib>Sawa, Teiji</creatorcontrib><creatorcontrib>Hirai, Toyohiro</creatorcontrib><creatorcontrib>Takeuchi, Osamu</creatorcontrib><title>Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia</title><title>Mucosal immunology</title><addtitle>Mucosal Immunol</addtitle><addtitle>Mucosal Immunol</addtitle><description>Inhaled pathogens including
Pseudomonas aeruginosa
initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against
P. aeruginosa
infection. Intratracheal treatment of mice with heat-killed
P. aeruginosa
resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against
P. aeruginosa
but also enhanced secretion of
Pseudomonas
-specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against
P. aeruginosa
re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.</description><subject>Adaptive Immunity</subject><subject>Allergology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Bacterial - metabolism</subject><subject>Biodegradation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Gastroenterology</subject><subject>Helper cells</subject><subject>Immunity, Innate</subject><subject>Immunoglobulin A</subject><subject>Immunoglobulin A - metabolism</subject><subject>Immunology</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Lung - immunology</subject><subject>Lung - microbiology</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Pathogens</subject><subject>Pneumonia, Bacterial - immunology</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Pseudomonas Infections - immunology</subject><subject>Respiratory Mucosa - metabolism</subject><subject>Ribonucleases - genetics</subject><subject>Ribonucleases - metabolism</subject><subject>Signal Transduction</subject><subject>Th17 Cells - immunology</subject><subject>Trachea</subject><issn>1933-0219</issn><issn>1935-3456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtv1TAQhSMEoqXwA9ggS2zYGMavxFmiikelSkWoXVuOPblNlTjBj0r339e3t4CExMqW5ztnZnya5i2DjwyE_pQkE1pRYJoCcEnVs-aU9UJRIVX7_PEuKHDWnzSvUroDaAGUeNmc8L7tlZbstCk_yryswcY9-Ym7YBNSRtbobjHlaDMmkm-RTCFj3Ga7J-tIcJvq2zyVhdjgifV2y9N9hZalBCRpnzIuVbeSLa4ZXSZ2Z6eQMtkCltpssq-bF6OdE755Os-am69frs-_08urbxfnny-pqxtkqmXXcieVEl5KqQUbupF1fNDWO-gAtOXaec-Ft8g89MOISurBKgTnOLTirPlw9K2T_Cp1JbNMyeE824BrSYaDYJKpDrqKvv8HvVtLDHU6c3BqtRaPFDtSLq4pRRzNFqel_p5hYA6ZmGMmpmZiDpkYVTXvnpzLsKD_o_gdQgX4EUi1FHYY_7b-v-sDofuYUg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Nakatsuka, Yoshinari</creator><creator>Vandenbon, Alexis</creator><creator>Mino, Takashi</creator><creator>Yoshinaga, Masanori</creator><creator>Uehata, Takuya</creator><creator>Cui, Xiaotong</creator><creator>Sato, Ayuko</creator><creator>Tsujimura, Tohru</creator><creator>Suzuki, Yutaka</creator><creator>Sato, Atsuyasu</creator><creator>Handa, Tomohiro</creator><creator>Chin, Kazuo</creator><creator>Sawa, Teiji</creator><creator>Hirai, Toyohiro</creator><creator>Takeuchi, Osamu</creator><general>Nature Publishing Group US</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20180701</creationdate><title>Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia</title><author>Nakatsuka, Yoshinari ; Vandenbon, Alexis ; Mino, Takashi ; Yoshinaga, Masanori ; Uehata, Takuya ; Cui, Xiaotong ; Sato, Ayuko ; Tsujimura, Tohru ; Suzuki, Yutaka ; Sato, Atsuyasu ; Handa, Tomohiro ; Chin, Kazuo ; Sawa, Teiji ; Hirai, Toyohiro ; Takeuchi, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-84762c4553d444831b7f172b8adc07008a28cdd23dae1d09bfe548ba5e0cc2063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive Immunity</topic><topic>Allergology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Bacterial - metabolism</topic><topic>Biodegradation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Gastroenterology</topic><topic>Helper cells</topic><topic>Immunity, Innate</topic><topic>Immunoglobulin A</topic><topic>Immunoglobulin A - metabolism</topic><topic>Immunology</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Lung - immunology</topic><topic>Lung - microbiology</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Pathogens</topic><topic>Pneumonia, Bacterial - immunology</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Pseudomonas Infections - immunology</topic><topic>Respiratory Mucosa - metabolism</topic><topic>Ribonucleases - genetics</topic><topic>Ribonucleases - metabolism</topic><topic>Signal Transduction</topic><topic>Th17 Cells - immunology</topic><topic>Trachea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakatsuka, Yoshinari</creatorcontrib><creatorcontrib>Vandenbon, Alexis</creatorcontrib><creatorcontrib>Mino, Takashi</creatorcontrib><creatorcontrib>Yoshinaga, Masanori</creatorcontrib><creatorcontrib>Uehata, Takuya</creatorcontrib><creatorcontrib>Cui, Xiaotong</creatorcontrib><creatorcontrib>Sato, Ayuko</creatorcontrib><creatorcontrib>Tsujimura, Tohru</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Sato, Atsuyasu</creatorcontrib><creatorcontrib>Handa, Tomohiro</creatorcontrib><creatorcontrib>Chin, Kazuo</creatorcontrib><creatorcontrib>Sawa, Teiji</creatorcontrib><creatorcontrib>Hirai, Toyohiro</creatorcontrib><creatorcontrib>Takeuchi, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Mucosal immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakatsuka, Yoshinari</au><au>Vandenbon, Alexis</au><au>Mino, Takashi</au><au>Yoshinaga, Masanori</au><au>Uehata, Takuya</au><au>Cui, Xiaotong</au><au>Sato, Ayuko</au><au>Tsujimura, Tohru</au><au>Suzuki, Yutaka</au><au>Sato, Atsuyasu</au><au>Handa, Tomohiro</au><au>Chin, Kazuo</au><au>Sawa, Teiji</au><au>Hirai, Toyohiro</au><au>Takeuchi, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia</atitle><jtitle>Mucosal immunology</jtitle><stitle>Mucosal Immunol</stitle><addtitle>Mucosal Immunol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>1203</spage><epage>1218</epage><pages>1203-1218</pages><issn>1933-0219</issn><eissn>1935-3456</eissn><abstract>Inhaled pathogens including
Pseudomonas aeruginosa
initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against
P. aeruginosa
infection. Intratracheal treatment of mice with heat-killed
P. aeruginosa
resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against
P. aeruginosa
but also enhanced secretion of
Pseudomonas
-specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against
P. aeruginosa
re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29695841</pmid><doi>10.1038/s41385-018-0024-5</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1933-0219 |
ispartof | Mucosal immunology, 2018-07, Vol.11 (4), p.1203-1218 |
issn | 1933-0219 1935-3456 |
language | eng |
recordid | cdi_proquest_miscellaneous_2031415707 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adaptive Immunity Allergology Animals Antibodies Antibodies, Bacterial - metabolism Biodegradation Biomedical and Life Sciences Biomedicine Epithelial cells Epithelium Gastroenterology Helper cells Immunity, Innate Immunoglobulin A Immunoglobulin A - metabolism Immunology Infections Inflammation Lung - immunology Lung - microbiology Lymphocyte Activation Lymphocytes T Mice Mice, Inbred C57BL Mice, Knockout NF-kappa B - metabolism NF-κB protein Pathogens Pneumonia, Bacterial - immunology Pseudomonas aeruginosa - physiology Pseudomonas Infections - immunology Respiratory Mucosa - metabolism Ribonucleases - genetics Ribonucleases - metabolism Signal Transduction Th17 Cells - immunology Trachea |
title | Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulmonary%20Regnase-1%20orchestrates%20the%20interplay%20of%20epithelium%20and%20adaptive%20immune%20systems%20to%20protect%20against%20pneumonia&rft.jtitle=Mucosal%20immunology&rft.au=Nakatsuka,%20Yoshinari&rft.date=2018-07-01&rft.volume=11&rft.issue=4&rft.spage=1203&rft.epage=1218&rft.pages=1203-1218&rft.issn=1933-0219&rft.eissn=1935-3456&rft_id=info:doi/10.1038/s41385-018-0024-5&rft_dat=%3Cproquest_cross%3E2031415707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063688307&rft_id=info:pmid/29695841&rfr_iscdi=true |