Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia

Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mucosal immunology 2018-07, Vol.11 (4), p.1203-1218
Hauptverfasser: Nakatsuka, Yoshinari, Vandenbon, Alexis, Mino, Takashi, Yoshinaga, Masanori, Uehata, Takuya, Cui, Xiaotong, Sato, Ayuko, Tsujimura, Tohru, Suzuki, Yutaka, Sato, Atsuyasu, Handa, Tomohiro, Chin, Kazuo, Sawa, Teiji, Hirai, Toyohiro, Takeuchi, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1218
container_issue 4
container_start_page 1203
container_title Mucosal immunology
container_volume 11
creator Nakatsuka, Yoshinari
Vandenbon, Alexis
Mino, Takashi
Yoshinaga, Masanori
Uehata, Takuya
Cui, Xiaotong
Sato, Ayuko
Tsujimura, Tohru
Suzuki, Yutaka
Sato, Atsuyasu
Handa, Tomohiro
Chin, Kazuo
Sawa, Teiji
Hirai, Toyohiro
Takeuchi, Osamu
description Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against P. aeruginosa infection. Intratracheal treatment of mice with heat-killed P. aeruginosa resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against P. aeruginosa but also enhanced secretion of Pseudomonas -specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against P. aeruginosa re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.
doi_str_mv 10.1038/s41385-018-0024-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2031415707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031415707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-84762c4553d444831b7f172b8adc07008a28cdd23dae1d09bfe548ba5e0cc2063</originalsourceid><addsrcrecordid>eNp1kUtv1TAQhSMEoqXwA9ggS2zYGMavxFmiikelSkWoXVuOPblNlTjBj0r339e3t4CExMqW5ztnZnya5i2DjwyE_pQkE1pRYJoCcEnVs-aU9UJRIVX7_PEuKHDWnzSvUroDaAGUeNmc8L7tlZbstCk_yryswcY9-Ym7YBNSRtbobjHlaDMmkm-RTCFj3Ga7J-tIcJvq2zyVhdjgifV2y9N9hZalBCRpnzIuVbeSLa4ZXSZ2Z6eQMtkCltpssq-bF6OdE755Os-am69frs-_08urbxfnny-pqxtkqmXXcieVEl5KqQUbupF1fNDWO-gAtOXaec-Ft8g89MOISurBKgTnOLTirPlw9K2T_Cp1JbNMyeE824BrSYaDYJKpDrqKvv8HvVtLDHU6c3BqtRaPFDtSLq4pRRzNFqel_p5hYA6ZmGMmpmZiDpkYVTXvnpzLsKD_o_gdQgX4EUi1FHYY_7b-v-sDofuYUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063688307</pqid></control><display><type>article</type><title>Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Nakatsuka, Yoshinari ; Vandenbon, Alexis ; Mino, Takashi ; Yoshinaga, Masanori ; Uehata, Takuya ; Cui, Xiaotong ; Sato, Ayuko ; Tsujimura, Tohru ; Suzuki, Yutaka ; Sato, Atsuyasu ; Handa, Tomohiro ; Chin, Kazuo ; Sawa, Teiji ; Hirai, Toyohiro ; Takeuchi, Osamu</creator><creatorcontrib>Nakatsuka, Yoshinari ; Vandenbon, Alexis ; Mino, Takashi ; Yoshinaga, Masanori ; Uehata, Takuya ; Cui, Xiaotong ; Sato, Ayuko ; Tsujimura, Tohru ; Suzuki, Yutaka ; Sato, Atsuyasu ; Handa, Tomohiro ; Chin, Kazuo ; Sawa, Teiji ; Hirai, Toyohiro ; Takeuchi, Osamu</creatorcontrib><description>Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against P. aeruginosa infection. Intratracheal treatment of mice with heat-killed P. aeruginosa resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against P. aeruginosa but also enhanced secretion of Pseudomonas -specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against P. aeruginosa re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.</description><identifier>ISSN: 1933-0219</identifier><identifier>EISSN: 1935-3456</identifier><identifier>DOI: 10.1038/s41385-018-0024-5</identifier><identifier>PMID: 29695841</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adaptive Immunity ; Allergology ; Animals ; Antibodies ; Antibodies, Bacterial - metabolism ; Biodegradation ; Biomedical and Life Sciences ; Biomedicine ; Epithelial cells ; Epithelium ; Gastroenterology ; Helper cells ; Immunity, Innate ; Immunoglobulin A ; Immunoglobulin A - metabolism ; Immunology ; Infections ; Inflammation ; Lung - immunology ; Lung - microbiology ; Lymphocyte Activation ; Lymphocytes T ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; NF-kappa B - metabolism ; NF-κB protein ; Pathogens ; Pneumonia, Bacterial - immunology ; Pseudomonas aeruginosa - physiology ; Pseudomonas Infections - immunology ; Respiratory Mucosa - metabolism ; Ribonucleases - genetics ; Ribonucleases - metabolism ; Signal Transduction ; Th17 Cells - immunology ; Trachea</subject><ispartof>Mucosal immunology, 2018-07, Vol.11 (4), p.1203-1218</ispartof><rights>Society for Mucosal Immunology 2018</rights><rights>Copyright Nature Publishing Group Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-84762c4553d444831b7f172b8adc07008a28cdd23dae1d09bfe548ba5e0cc2063</citedby><cites>FETCH-LOGICAL-c345t-84762c4553d444831b7f172b8adc07008a28cdd23dae1d09bfe548ba5e0cc2063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29695841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakatsuka, Yoshinari</creatorcontrib><creatorcontrib>Vandenbon, Alexis</creatorcontrib><creatorcontrib>Mino, Takashi</creatorcontrib><creatorcontrib>Yoshinaga, Masanori</creatorcontrib><creatorcontrib>Uehata, Takuya</creatorcontrib><creatorcontrib>Cui, Xiaotong</creatorcontrib><creatorcontrib>Sato, Ayuko</creatorcontrib><creatorcontrib>Tsujimura, Tohru</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Sato, Atsuyasu</creatorcontrib><creatorcontrib>Handa, Tomohiro</creatorcontrib><creatorcontrib>Chin, Kazuo</creatorcontrib><creatorcontrib>Sawa, Teiji</creatorcontrib><creatorcontrib>Hirai, Toyohiro</creatorcontrib><creatorcontrib>Takeuchi, Osamu</creatorcontrib><title>Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia</title><title>Mucosal immunology</title><addtitle>Mucosal Immunol</addtitle><addtitle>Mucosal Immunol</addtitle><description>Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against P. aeruginosa infection. Intratracheal treatment of mice with heat-killed P. aeruginosa resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against P. aeruginosa but also enhanced secretion of Pseudomonas -specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against P. aeruginosa re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.</description><subject>Adaptive Immunity</subject><subject>Allergology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Bacterial - metabolism</subject><subject>Biodegradation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Gastroenterology</subject><subject>Helper cells</subject><subject>Immunity, Innate</subject><subject>Immunoglobulin A</subject><subject>Immunoglobulin A - metabolism</subject><subject>Immunology</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Lung - immunology</subject><subject>Lung - microbiology</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Pathogens</subject><subject>Pneumonia, Bacterial - immunology</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Pseudomonas Infections - immunology</subject><subject>Respiratory Mucosa - metabolism</subject><subject>Ribonucleases - genetics</subject><subject>Ribonucleases - metabolism</subject><subject>Signal Transduction</subject><subject>Th17 Cells - immunology</subject><subject>Trachea</subject><issn>1933-0219</issn><issn>1935-3456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtv1TAQhSMEoqXwA9ggS2zYGMavxFmiikelSkWoXVuOPblNlTjBj0r339e3t4CExMqW5ztnZnya5i2DjwyE_pQkE1pRYJoCcEnVs-aU9UJRIVX7_PEuKHDWnzSvUroDaAGUeNmc8L7tlZbstCk_yryswcY9-Ym7YBNSRtbobjHlaDMmkm-RTCFj3Ga7J-tIcJvq2zyVhdjgifV2y9N9hZalBCRpnzIuVbeSLa4ZXSZ2Z6eQMtkCltpssq-bF6OdE755Os-am69frs-_08urbxfnny-pqxtkqmXXcieVEl5KqQUbupF1fNDWO-gAtOXaec-Ft8g89MOISurBKgTnOLTirPlw9K2T_Cp1JbNMyeE824BrSYaDYJKpDrqKvv8HvVtLDHU6c3BqtRaPFDtSLq4pRRzNFqel_p5hYA6ZmGMmpmZiDpkYVTXvnpzLsKD_o_gdQgX4EUi1FHYY_7b-v-sDofuYUg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Nakatsuka, Yoshinari</creator><creator>Vandenbon, Alexis</creator><creator>Mino, Takashi</creator><creator>Yoshinaga, Masanori</creator><creator>Uehata, Takuya</creator><creator>Cui, Xiaotong</creator><creator>Sato, Ayuko</creator><creator>Tsujimura, Tohru</creator><creator>Suzuki, Yutaka</creator><creator>Sato, Atsuyasu</creator><creator>Handa, Tomohiro</creator><creator>Chin, Kazuo</creator><creator>Sawa, Teiji</creator><creator>Hirai, Toyohiro</creator><creator>Takeuchi, Osamu</creator><general>Nature Publishing Group US</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20180701</creationdate><title>Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia</title><author>Nakatsuka, Yoshinari ; Vandenbon, Alexis ; Mino, Takashi ; Yoshinaga, Masanori ; Uehata, Takuya ; Cui, Xiaotong ; Sato, Ayuko ; Tsujimura, Tohru ; Suzuki, Yutaka ; Sato, Atsuyasu ; Handa, Tomohiro ; Chin, Kazuo ; Sawa, Teiji ; Hirai, Toyohiro ; Takeuchi, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-84762c4553d444831b7f172b8adc07008a28cdd23dae1d09bfe548ba5e0cc2063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive Immunity</topic><topic>Allergology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Bacterial - metabolism</topic><topic>Biodegradation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Gastroenterology</topic><topic>Helper cells</topic><topic>Immunity, Innate</topic><topic>Immunoglobulin A</topic><topic>Immunoglobulin A - metabolism</topic><topic>Immunology</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Lung - immunology</topic><topic>Lung - microbiology</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Pathogens</topic><topic>Pneumonia, Bacterial - immunology</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Pseudomonas Infections - immunology</topic><topic>Respiratory Mucosa - metabolism</topic><topic>Ribonucleases - genetics</topic><topic>Ribonucleases - metabolism</topic><topic>Signal Transduction</topic><topic>Th17 Cells - immunology</topic><topic>Trachea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakatsuka, Yoshinari</creatorcontrib><creatorcontrib>Vandenbon, Alexis</creatorcontrib><creatorcontrib>Mino, Takashi</creatorcontrib><creatorcontrib>Yoshinaga, Masanori</creatorcontrib><creatorcontrib>Uehata, Takuya</creatorcontrib><creatorcontrib>Cui, Xiaotong</creatorcontrib><creatorcontrib>Sato, Ayuko</creatorcontrib><creatorcontrib>Tsujimura, Tohru</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Sato, Atsuyasu</creatorcontrib><creatorcontrib>Handa, Tomohiro</creatorcontrib><creatorcontrib>Chin, Kazuo</creatorcontrib><creatorcontrib>Sawa, Teiji</creatorcontrib><creatorcontrib>Hirai, Toyohiro</creatorcontrib><creatorcontrib>Takeuchi, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Mucosal immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakatsuka, Yoshinari</au><au>Vandenbon, Alexis</au><au>Mino, Takashi</au><au>Yoshinaga, Masanori</au><au>Uehata, Takuya</au><au>Cui, Xiaotong</au><au>Sato, Ayuko</au><au>Tsujimura, Tohru</au><au>Suzuki, Yutaka</au><au>Sato, Atsuyasu</au><au>Handa, Tomohiro</au><au>Chin, Kazuo</au><au>Sawa, Teiji</au><au>Hirai, Toyohiro</au><au>Takeuchi, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia</atitle><jtitle>Mucosal immunology</jtitle><stitle>Mucosal Immunol</stitle><addtitle>Mucosal Immunol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>1203</spage><epage>1218</epage><pages>1203-1218</pages><issn>1933-0219</issn><eissn>1935-3456</eissn><abstract>Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against P. aeruginosa infection. Intratracheal treatment of mice with heat-killed P. aeruginosa resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against P. aeruginosa but also enhanced secretion of Pseudomonas -specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against P. aeruginosa re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29695841</pmid><doi>10.1038/s41385-018-0024-5</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-0219
ispartof Mucosal immunology, 2018-07, Vol.11 (4), p.1203-1218
issn 1933-0219
1935-3456
language eng
recordid cdi_proquest_miscellaneous_2031415707
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adaptive Immunity
Allergology
Animals
Antibodies
Antibodies, Bacterial - metabolism
Biodegradation
Biomedical and Life Sciences
Biomedicine
Epithelial cells
Epithelium
Gastroenterology
Helper cells
Immunity, Innate
Immunoglobulin A
Immunoglobulin A - metabolism
Immunology
Infections
Inflammation
Lung - immunology
Lung - microbiology
Lymphocyte Activation
Lymphocytes T
Mice
Mice, Inbred C57BL
Mice, Knockout
NF-kappa B - metabolism
NF-κB protein
Pathogens
Pneumonia, Bacterial - immunology
Pseudomonas aeruginosa - physiology
Pseudomonas Infections - immunology
Respiratory Mucosa - metabolism
Ribonucleases - genetics
Ribonucleases - metabolism
Signal Transduction
Th17 Cells - immunology
Trachea
title Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulmonary%20Regnase-1%20orchestrates%20the%20interplay%20of%20epithelium%20and%20adaptive%20immune%20systems%20to%20protect%20against%20pneumonia&rft.jtitle=Mucosal%20immunology&rft.au=Nakatsuka,%20Yoshinari&rft.date=2018-07-01&rft.volume=11&rft.issue=4&rft.spage=1203&rft.epage=1218&rft.pages=1203-1218&rft.issn=1933-0219&rft.eissn=1935-3456&rft_id=info:doi/10.1038/s41385-018-0024-5&rft_dat=%3Cproquest_cross%3E2031415707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063688307&rft_id=info:pmid/29695841&rfr_iscdi=true