Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer

The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-04, Vol.120 (14), p.147601-147601, Article 147601
Hauptverfasser: Huang, Chengxi, Du, Yongping, Wu, Haiping, Xiang, Hongjun, Deng, Kaiming, Kan, Erjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147601
container_issue 14
container_start_page 147601
container_title Physical review letters
container_volume 120
creator Huang, Chengxi
Du, Yongping
Wu, Haiping
Xiang, Hongjun
Deng, Kaiming
Kan, Erjun
description The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr_{3} monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr─Br_{6} units. As an example, we further show that (CrBr_{3})_{2}Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.
doi_str_mv 10.1103/PhysRevLett.120.147601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2031415479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118382976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-bd9f266f09cb6c4deeb84a14181787a11ce289c0794c187fc8d36111f2bbd4363</originalsourceid><addsrcrecordid>eNpdUctKBDEQDKLo-vgFGfDiZTSdyeZxFPEFK4roUUIm06OR2YkmWWH_3iyrIp6a7q4quqsIOQR6AkCb0_vXZXrAzxnmfAKsDLkUFDbIBKjUtQTgm2RCaQO1plTukN2U3iilwITaJjtMC82BTyfk-T5i5132YaxCX92MOfoxeVddYoxhbl9GzD8dDujK2vm8rPxY2eox2oJdcetbzHaoru3gO6xuwxgGu8S4T7Z6OyQ8-K575Ony4vH8up7dXd2cn81qx-k0122neyZET7VrheMdYqu4BQ4KpJIWwCFT2pXPuAMle6e6RgBAz9q2441o9sjxWvc9ho8FpmzmPjkcBjtiWCTDihEcplzqAj36B30LiziW6wwDUI1iWq4ExRrlYkgpYm_eo5_buDRAzSoA8ycAUwIw6wAK8fBbftHOsful_TjefAFsZITQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118382976</pqid></control><display><type>article</type><title>Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer</title><source>EZB Electronic Journals Library</source><source>APS: American Physical Society E-Journals (Physics)</source><creator>Huang, Chengxi ; Du, Yongping ; Wu, Haiping ; Xiang, Hongjun ; Deng, Kaiming ; Kan, Erjun</creator><creatorcontrib>Huang, Chengxi ; Du, Yongping ; Wu, Haiping ; Xiang, Hongjun ; Deng, Kaiming ; Kan, Erjun</creatorcontrib><description>The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr_{3} monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr─Br_{6} units. As an example, we further show that (CrBr_{3})_{2}Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.120.147601</identifier><identifier>PMID: 29694145</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Chromium bromides ; Data storage ; Electric dipoles ; Ferroelectric materials ; Ferroelectricity ; Ferromagnetism ; First principles ; Jahn-Teller effect ; Metal halides ; Monolayers ; Multiferroic materials ; Nanotechnology devices ; Transition metals</subject><ispartof>Physical review letters, 2018-04, Vol.120 (14), p.147601-147601, Article 147601</ispartof><rights>Copyright American Physical Society Apr 6, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-bd9f266f09cb6c4deeb84a14181787a11ce289c0794c187fc8d36111f2bbd4363</citedby><cites>FETCH-LOGICAL-c405t-bd9f266f09cb6c4deeb84a14181787a11ce289c0794c187fc8d36111f2bbd4363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29694145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chengxi</creatorcontrib><creatorcontrib>Du, Yongping</creatorcontrib><creatorcontrib>Wu, Haiping</creatorcontrib><creatorcontrib>Xiang, Hongjun</creatorcontrib><creatorcontrib>Deng, Kaiming</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><title>Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr_{3} monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr─Br_{6} units. As an example, we further show that (CrBr_{3})_{2}Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.</description><subject>Chromium bromides</subject><subject>Data storage</subject><subject>Electric dipoles</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Jahn-Teller effect</subject><subject>Metal halides</subject><subject>Monolayers</subject><subject>Multiferroic materials</subject><subject>Nanotechnology devices</subject><subject>Transition metals</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdUctKBDEQDKLo-vgFGfDiZTSdyeZxFPEFK4roUUIm06OR2YkmWWH_3iyrIp6a7q4quqsIOQR6AkCb0_vXZXrAzxnmfAKsDLkUFDbIBKjUtQTgm2RCaQO1plTukN2U3iilwITaJjtMC82BTyfk-T5i5132YaxCX92MOfoxeVddYoxhbl9GzD8dDujK2vm8rPxY2eox2oJdcetbzHaoru3gO6xuwxgGu8S4T7Z6OyQ8-K575Ony4vH8up7dXd2cn81qx-k0122neyZET7VrheMdYqu4BQ4KpJIWwCFT2pXPuAMle6e6RgBAz9q2441o9sjxWvc9ho8FpmzmPjkcBjtiWCTDihEcplzqAj36B30LiziW6wwDUI1iWq4ExRrlYkgpYm_eo5_buDRAzSoA8ycAUwIw6wAK8fBbftHOsful_TjefAFsZITQ</recordid><startdate>20180406</startdate><enddate>20180406</enddate><creator>Huang, Chengxi</creator><creator>Du, Yongping</creator><creator>Wu, Haiping</creator><creator>Xiang, Hongjun</creator><creator>Deng, Kaiming</creator><creator>Kan, Erjun</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180406</creationdate><title>Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer</title><author>Huang, Chengxi ; Du, Yongping ; Wu, Haiping ; Xiang, Hongjun ; Deng, Kaiming ; Kan, Erjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-bd9f266f09cb6c4deeb84a14181787a11ce289c0794c187fc8d36111f2bbd4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chromium bromides</topic><topic>Data storage</topic><topic>Electric dipoles</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Jahn-Teller effect</topic><topic>Metal halides</topic><topic>Monolayers</topic><topic>Multiferroic materials</topic><topic>Nanotechnology devices</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chengxi</creatorcontrib><creatorcontrib>Du, Yongping</creatorcontrib><creatorcontrib>Wu, Haiping</creatorcontrib><creatorcontrib>Xiang, Hongjun</creatorcontrib><creatorcontrib>Deng, Kaiming</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chengxi</au><au>Du, Yongping</au><au>Wu, Haiping</au><au>Xiang, Hongjun</au><au>Deng, Kaiming</au><au>Kan, Erjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-04-06</date><risdate>2018</risdate><volume>120</volume><issue>14</issue><spage>147601</spage><epage>147601</epage><pages>147601-147601</pages><artnum>147601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr_{3} monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr─Br_{6} units. As an example, we further show that (CrBr_{3})_{2}Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>29694145</pmid><doi>10.1103/PhysRevLett.120.147601</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-04, Vol.120 (14), p.147601-147601, Article 147601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2031415479
source EZB Electronic Journals Library; APS: American Physical Society E-Journals (Physics)
subjects Chromium bromides
Data storage
Electric dipoles
Ferroelectric materials
Ferroelectricity
Ferromagnetism
First principles
Jahn-Teller effect
Metal halides
Monolayers
Multiferroic materials
Nanotechnology devices
Transition metals
title Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Intrinsic%20Ferromagnetic%20Ferroelectricity%20in%20a%20Transition-Metal%20Halide%20Monolayer&rft.jtitle=Physical%20review%20letters&rft.au=Huang,%20Chengxi&rft.date=2018-04-06&rft.volume=120&rft.issue=14&rft.spage=147601&rft.epage=147601&rft.pages=147601-147601&rft.artnum=147601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.120.147601&rft_dat=%3Cproquest_cross%3E2118382976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118382976&rft_id=info:pmid/29694145&rfr_iscdi=true