2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids

Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size 1 , 2 . Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2018-06, Vol.13 (6), p.456-462
Hauptverfasser: Xu, Jixian, Voznyy, Oleksandr, Liu, Mengxia, Kirmani, Ahmad R., Walters, Grant, Munir, Rahim, Abdelsamie, Maged, Proppe, Andrew H., Sarkar, Amrita, García de Arquer, F. Pelayo, Wei, Mingyang, Sun, Bin, Liu, Min, Ouellette, Olivier, Quintero-Bermudez, Rafael, Li, Jie, Fan, James, Quan, Lina, Todorovic, Petar, Tan, Hairen, Hoogland, Sjoerd, Kelley, Shana O., Stefik, Morgan, Amassian, Aram, Sargent, Edward H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 6
container_start_page 456
container_title Nature nanotechnology
container_volume 13
creator Xu, Jixian
Voznyy, Oleksandr
Liu, Mengxia
Kirmani, Ahmad R.
Walters, Grant
Munir, Rahim
Abdelsamie, Maged
Proppe, Andrew H.
Sarkar, Amrita
García de Arquer, F. Pelayo
Wei, Mingyang
Sun, Bin
Liu, Min
Ouellette, Olivier
Quintero-Bermudez, Rafael
Li, Jie
Fan, James
Quan, Lina
Todorovic, Petar
Tan, Hairen
Hoogland, Sjoerd
Kelley, Shana O.
Stefik, Morgan
Amassian, Aram
Sargent, Edward H.
description Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size 1 , 2 . Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation 2 , 4 – 7 , combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current ( J SC ) and open-circuit voltage ( V OC ), as seen in previous reports 3 , 9 – 11 . Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic–amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of J SC (32 mA cm −2 ) are fabricated. The V OC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%. A new matrix engineering strategy enables improvements of CQD solar cell efficiency via considerable enhancement of the photocarrier diffusion length.
doi_str_mv 10.1038/s41565-018-0117-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2031034856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031034856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-156918f3ea9b4f581f8a6b5f292c8ce55d219c260c1135d16302d0f60d92a59a3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk5_gDcS8Mabaj6aLLkUv2Eggl6HLE23jrbpklZ0v97UzgmCF-Hk4jnveXkAOMXoEiMqrkKKGWcJwiI-PE02e2CMp6lIKJVsf_cX0xE4CmGFECOSpIdgRCQXnEg8Bi_kFla69cUHtPWiqK31Rb2AufNw6Sq3sLV1XYDrTtdtV8HMtdC4ril7qKhhs3Ste3dlqwsDgyuLLByDg1yXwZ5s5wS83d-93jwms-eHp5vrWWJSKtokNpdY5NRqOU9zJnAuNJ-zPDY0wljGMoKlIRwZjCnLMKeIZCjnKJNEM6npBFwMuY13686GVlVFMLYs9XdlRRCNklLBeETP_6Ar1_k6tosUw4gIHtEJwANlvAvB21w1vqi0_1QYqd63Gnyr6Fv1vtUm7pxtk7t5ZbPdxo_gCJABCE0v1vrf0_-nfgFCCors</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051028610</pqid></control><display><type>article</type><title>2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Xu, Jixian ; Voznyy, Oleksandr ; Liu, Mengxia ; Kirmani, Ahmad R. ; Walters, Grant ; Munir, Rahim ; Abdelsamie, Maged ; Proppe, Andrew H. ; Sarkar, Amrita ; García de Arquer, F. Pelayo ; Wei, Mingyang ; Sun, Bin ; Liu, Min ; Ouellette, Olivier ; Quintero-Bermudez, Rafael ; Li, Jie ; Fan, James ; Quan, Lina ; Todorovic, Petar ; Tan, Hairen ; Hoogland, Sjoerd ; Kelley, Shana O. ; Stefik, Morgan ; Amassian, Aram ; Sargent, Edward H.</creator><creatorcontrib>Xu, Jixian ; Voznyy, Oleksandr ; Liu, Mengxia ; Kirmani, Ahmad R. ; Walters, Grant ; Munir, Rahim ; Abdelsamie, Maged ; Proppe, Andrew H. ; Sarkar, Amrita ; García de Arquer, F. Pelayo ; Wei, Mingyang ; Sun, Bin ; Liu, Min ; Ouellette, Olivier ; Quintero-Bermudez, Rafael ; Li, Jie ; Fan, James ; Quan, Lina ; Todorovic, Petar ; Tan, Hairen ; Hoogland, Sjoerd ; Kelley, Shana O. ; Stefik, Morgan ; Amassian, Aram ; Sargent, Edward H.</creatorcontrib><description>Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size 1 , 2 . Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation 2 , 4 – 7 , combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current ( J SC ) and open-circuit voltage ( V OC ), as seen in previous reports 3 , 9 – 11 . Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic–amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of J SC (32 mA cm −2 ) are fabricated. The V OC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%. A new matrix engineering strategy enables improvements of CQD solar cell efficiency via considerable enhancement of the photocarrier diffusion length.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-018-0117-z</identifier><identifier>PMID: 29686291</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/299/946 ; 639/925/357/1017 ; Absorption spectra ; Atomic structure ; Chemistry and Materials Science ; Diffusion layers ; Diffusion length ; Energy conversion efficiency ; Fabrication ; Letter ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Open circuit voltage ; Packing density ; Perovskites ; Photovoltaic cells ; Photovoltaics ; Quantum dots ; Short circuits ; Short-circuit current ; Solar cells ; Thickness</subject><ispartof>Nature nanotechnology, 2018-06, Vol.13 (6), p.456-462</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-156918f3ea9b4f581f8a6b5f292c8ce55d219c260c1135d16302d0f60d92a59a3</citedby><cites>FETCH-LOGICAL-c438t-156918f3ea9b4f581f8a6b5f292c8ce55d219c260c1135d16302d0f60d92a59a3</cites><orcidid>0000-0003-0821-476X ; 0000-0002-8656-5074 ; 0000-0003-3860-9949 ; 0000-0001-8057-9558 ; 0000-0002-8233-0999 ; 0000-0003-3360-5359 ; 0000-0001-9301-3764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-018-0117-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-018-0117-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29686291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jixian</creatorcontrib><creatorcontrib>Voznyy, Oleksandr</creatorcontrib><creatorcontrib>Liu, Mengxia</creatorcontrib><creatorcontrib>Kirmani, Ahmad R.</creatorcontrib><creatorcontrib>Walters, Grant</creatorcontrib><creatorcontrib>Munir, Rahim</creatorcontrib><creatorcontrib>Abdelsamie, Maged</creatorcontrib><creatorcontrib>Proppe, Andrew H.</creatorcontrib><creatorcontrib>Sarkar, Amrita</creatorcontrib><creatorcontrib>García de Arquer, F. Pelayo</creatorcontrib><creatorcontrib>Wei, Mingyang</creatorcontrib><creatorcontrib>Sun, Bin</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Ouellette, Olivier</creatorcontrib><creatorcontrib>Quintero-Bermudez, Rafael</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Fan, James</creatorcontrib><creatorcontrib>Quan, Lina</creatorcontrib><creatorcontrib>Todorovic, Petar</creatorcontrib><creatorcontrib>Tan, Hairen</creatorcontrib><creatorcontrib>Hoogland, Sjoerd</creatorcontrib><creatorcontrib>Kelley, Shana O.</creatorcontrib><creatorcontrib>Stefik, Morgan</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Sargent, Edward H.</creatorcontrib><title>2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size 1 , 2 . Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation 2 , 4 – 7 , combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current ( J SC ) and open-circuit voltage ( V OC ), as seen in previous reports 3 , 9 – 11 . Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic–amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of J SC (32 mA cm −2 ) are fabricated. The V OC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%. A new matrix engineering strategy enables improvements of CQD solar cell efficiency via considerable enhancement of the photocarrier diffusion length.</description><subject>140/125</subject><subject>639/301/299/946</subject><subject>639/925/357/1017</subject><subject>Absorption spectra</subject><subject>Atomic structure</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion layers</subject><subject>Diffusion length</subject><subject>Energy conversion efficiency</subject><subject>Fabrication</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Open circuit voltage</subject><subject>Packing density</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Quantum dots</subject><subject>Short circuits</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><subject>Thickness</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF1LwzAUhoMobk5_gDcS8Mabaj6aLLkUv2Eggl6HLE23jrbpklZ0v97UzgmCF-Hk4jnveXkAOMXoEiMqrkKKGWcJwiI-PE02e2CMp6lIKJVsf_cX0xE4CmGFECOSpIdgRCQXnEg8Bi_kFla69cUHtPWiqK31Rb2AufNw6Sq3sLV1XYDrTtdtV8HMtdC4ril7qKhhs3Ste3dlqwsDgyuLLByDg1yXwZ5s5wS83d-93jwms-eHp5vrWWJSKtokNpdY5NRqOU9zJnAuNJ-zPDY0wljGMoKlIRwZjCnLMKeIZCjnKJNEM6npBFwMuY13686GVlVFMLYs9XdlRRCNklLBeETP_6Ar1_k6tosUw4gIHtEJwANlvAvB21w1vqi0_1QYqd63Gnyr6Fv1vtUm7pxtk7t5ZbPdxo_gCJABCE0v1vrf0_-nfgFCCors</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Xu, Jixian</creator><creator>Voznyy, Oleksandr</creator><creator>Liu, Mengxia</creator><creator>Kirmani, Ahmad R.</creator><creator>Walters, Grant</creator><creator>Munir, Rahim</creator><creator>Abdelsamie, Maged</creator><creator>Proppe, Andrew H.</creator><creator>Sarkar, Amrita</creator><creator>García de Arquer, F. Pelayo</creator><creator>Wei, Mingyang</creator><creator>Sun, Bin</creator><creator>Liu, Min</creator><creator>Ouellette, Olivier</creator><creator>Quintero-Bermudez, Rafael</creator><creator>Li, Jie</creator><creator>Fan, James</creator><creator>Quan, Lina</creator><creator>Todorovic, Petar</creator><creator>Tan, Hairen</creator><creator>Hoogland, Sjoerd</creator><creator>Kelley, Shana O.</creator><creator>Stefik, Morgan</creator><creator>Amassian, Aram</creator><creator>Sargent, Edward H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0821-476X</orcidid><orcidid>https://orcid.org/0000-0002-8656-5074</orcidid><orcidid>https://orcid.org/0000-0003-3860-9949</orcidid><orcidid>https://orcid.org/0000-0001-8057-9558</orcidid><orcidid>https://orcid.org/0000-0002-8233-0999</orcidid><orcidid>https://orcid.org/0000-0003-3360-5359</orcidid><orcidid>https://orcid.org/0000-0001-9301-3764</orcidid></search><sort><creationdate>20180601</creationdate><title>2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids</title><author>Xu, Jixian ; Voznyy, Oleksandr ; Liu, Mengxia ; Kirmani, Ahmad R. ; Walters, Grant ; Munir, Rahim ; Abdelsamie, Maged ; Proppe, Andrew H. ; Sarkar, Amrita ; García de Arquer, F. Pelayo ; Wei, Mingyang ; Sun, Bin ; Liu, Min ; Ouellette, Olivier ; Quintero-Bermudez, Rafael ; Li, Jie ; Fan, James ; Quan, Lina ; Todorovic, Petar ; Tan, Hairen ; Hoogland, Sjoerd ; Kelley, Shana O. ; Stefik, Morgan ; Amassian, Aram ; Sargent, Edward H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-156918f3ea9b4f581f8a6b5f292c8ce55d219c260c1135d16302d0f60d92a59a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/125</topic><topic>639/301/299/946</topic><topic>639/925/357/1017</topic><topic>Absorption spectra</topic><topic>Atomic structure</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion layers</topic><topic>Diffusion length</topic><topic>Energy conversion efficiency</topic><topic>Fabrication</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Open circuit voltage</topic><topic>Packing density</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Quantum dots</topic><topic>Short circuits</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jixian</creatorcontrib><creatorcontrib>Voznyy, Oleksandr</creatorcontrib><creatorcontrib>Liu, Mengxia</creatorcontrib><creatorcontrib>Kirmani, Ahmad R.</creatorcontrib><creatorcontrib>Walters, Grant</creatorcontrib><creatorcontrib>Munir, Rahim</creatorcontrib><creatorcontrib>Abdelsamie, Maged</creatorcontrib><creatorcontrib>Proppe, Andrew H.</creatorcontrib><creatorcontrib>Sarkar, Amrita</creatorcontrib><creatorcontrib>García de Arquer, F. Pelayo</creatorcontrib><creatorcontrib>Wei, Mingyang</creatorcontrib><creatorcontrib>Sun, Bin</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Ouellette, Olivier</creatorcontrib><creatorcontrib>Quintero-Bermudez, Rafael</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Fan, James</creatorcontrib><creatorcontrib>Quan, Lina</creatorcontrib><creatorcontrib>Todorovic, Petar</creatorcontrib><creatorcontrib>Tan, Hairen</creatorcontrib><creatorcontrib>Hoogland, Sjoerd</creatorcontrib><creatorcontrib>Kelley, Shana O.</creatorcontrib><creatorcontrib>Stefik, Morgan</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Sargent, Edward H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jixian</au><au>Voznyy, Oleksandr</au><au>Liu, Mengxia</au><au>Kirmani, Ahmad R.</au><au>Walters, Grant</au><au>Munir, Rahim</au><au>Abdelsamie, Maged</au><au>Proppe, Andrew H.</au><au>Sarkar, Amrita</au><au>García de Arquer, F. Pelayo</au><au>Wei, Mingyang</au><au>Sun, Bin</au><au>Liu, Min</au><au>Ouellette, Olivier</au><au>Quintero-Bermudez, Rafael</au><au>Li, Jie</au><au>Fan, James</au><au>Quan, Lina</au><au>Todorovic, Petar</au><au>Tan, Hairen</au><au>Hoogland, Sjoerd</au><au>Kelley, Shana O.</au><au>Stefik, Morgan</au><au>Amassian, Aram</au><au>Sargent, Edward H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>456</spage><epage>462</epage><pages>456-462</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size 1 , 2 . Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation 2 , 4 – 7 , combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current ( J SC ) and open-circuit voltage ( V OC ), as seen in previous reports 3 , 9 – 11 . Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic–amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of J SC (32 mA cm −2 ) are fabricated. The V OC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%. A new matrix engineering strategy enables improvements of CQD solar cell efficiency via considerable enhancement of the photocarrier diffusion length.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29686291</pmid><doi>10.1038/s41565-018-0117-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0821-476X</orcidid><orcidid>https://orcid.org/0000-0002-8656-5074</orcidid><orcidid>https://orcid.org/0000-0003-3860-9949</orcidid><orcidid>https://orcid.org/0000-0001-8057-9558</orcidid><orcidid>https://orcid.org/0000-0002-8233-0999</orcidid><orcidid>https://orcid.org/0000-0003-3360-5359</orcidid><orcidid>https://orcid.org/0000-0001-9301-3764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2018-06, Vol.13 (6), p.456-462
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2031034856
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 140/125
639/301/299/946
639/925/357/1017
Absorption spectra
Atomic structure
Chemistry and Materials Science
Diffusion layers
Diffusion length
Energy conversion efficiency
Fabrication
Letter
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Open circuit voltage
Packing density
Perovskites
Photovoltaic cells
Photovoltaics
Quantum dots
Short circuits
Short-circuit current
Solar cells
Thickness
title 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20matrix%20engineering%20for%20homogeneous%20quantum%20dot%20coupling%20in%20photovoltaic%20solids&rft.jtitle=Nature%20nanotechnology&rft.au=Xu,%20Jixian&rft.date=2018-06-01&rft.volume=13&rft.issue=6&rft.spage=456&rft.epage=462&rft.pages=456-462&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-018-0117-z&rft_dat=%3Cproquest_cross%3E2031034856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051028610&rft_id=info:pmid/29686291&rfr_iscdi=true