Multiparameter cell-tracking intrinsic cytometry for single-cell characterization

An abundance of label-free microfluidic techniques for measuring cell intrinsic markers exists, yet these techniques are seldom combined because of integration complexity such as restricted physical space and incompatible modes of operation. We introduce a multiparameter intrinsic cytometry approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2018-01, Vol.18 (1), p.143-1439
Hauptverfasser: Apichitsopa, N, Jaffe, A, Voldman, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1439
container_issue 1
container_start_page 143
container_title Lab on a chip
container_volume 18
creator Apichitsopa, N
Jaffe, A
Voldman, J
description An abundance of label-free microfluidic techniques for measuring cell intrinsic markers exists, yet these techniques are seldom combined because of integration complexity such as restricted physical space and incompatible modes of operation. We introduce a multiparameter intrinsic cytometry approach for the characterization of single cells that combines ≥2 label-free measurement techniques onto the same platform and uses cell tracking to associate the measured properties to cells. Our proof-of-concept implementation can measure up to five intrinsic properties including size, deformability, and polarizability at three frequencies. Each measurement module along with the integrated platform were validated and evaluated in the context of chemically induced changes in the actin cytoskeleton of cells. viSNE and machine learning classification were used to determine the orthogonality between and the contribution of the measured intrinsic markers for cell classification. We introduce a multiparameter intrinsic cytometry approach for single-cell characterization that combines ≥2 label-free measurement techniques onto the same platform.
doi_str_mv 10.1039/c8lc00240a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2031026928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031026928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-f57f3b9354d3febfb47a4add55a80d28401a3dfd4b07ca6855ff582cf9bbc7183</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgiqurF-9KwYsI1UmTNMlxKX7Bigh6LmmaaNZ-rEl7WH-9rbuu4CmBeWYY3kHoBMMVBiKvtag0QEJB7aADTDmJAQu5u_1LPkGHISwAMKOp2EeTRKaCY-AH6Pmxrzq3VF7VpjM-0qaq4s4r_eGat8g1nXdNcDrSq64dhF9FtvVRGIqViUcc6fehWQ-97kt1rm2O0J5VVTDHm3eKXm9vXrL7eP5095DN5rGmPO1iy7glhSSMlsSawhaUK6rKkjEloEwEBaxIaUtaANcqFYxZy0SirSwKzbEgU3Sxnrv07WdvQpfXLowbqca0fcgTIBiSVCYjPf9HF23vm2G7UUnMgMGoLtdK-zYEb2y-9K5WfpVjyMeg80zMs5-gZwM-24zsi9qUW_qb7ABO18AHva3-XYp8A62Gg5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039150508</pqid></control><display><type>article</type><title>Multiparameter cell-tracking intrinsic cytometry for single-cell characterization</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Apichitsopa, N ; Jaffe, A ; Voldman, J</creator><creatorcontrib>Apichitsopa, N ; Jaffe, A ; Voldman, J</creatorcontrib><description>An abundance of label-free microfluidic techniques for measuring cell intrinsic markers exists, yet these techniques are seldom combined because of integration complexity such as restricted physical space and incompatible modes of operation. We introduce a multiparameter intrinsic cytometry approach for the characterization of single cells that combines ≥2 label-free measurement techniques onto the same platform and uses cell tracking to associate the measured properties to cells. Our proof-of-concept implementation can measure up to five intrinsic properties including size, deformability, and polarizability at three frequencies. Each measurement module along with the integrated platform were validated and evaluated in the context of chemically induced changes in the actin cytoskeleton of cells. viSNE and machine learning classification were used to determine the orthogonality between and the contribution of the measured intrinsic markers for cell classification. We introduce a multiparameter intrinsic cytometry approach for single-cell characterization that combines ≥2 label-free measurement techniques onto the same platform.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c8lc00240a</identifier><identifier>PMID: 29687107</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Classification ; Cytometry ; Deformation ; Formability ; Machine learning ; Markers ; Measurement techniques ; Organic chemistry ; Orthogonality ; Tracking</subject><ispartof>Lab on a chip, 2018-01, Vol.18 (1), p.143-1439</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-f57f3b9354d3febfb47a4add55a80d28401a3dfd4b07ca6855ff582cf9bbc7183</citedby><cites>FETCH-LOGICAL-c476t-f57f3b9354d3febfb47a4add55a80d28401a3dfd4b07ca6855ff582cf9bbc7183</cites><orcidid>0000-0002-7705-4467 ; 0000-0001-8045-5053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29687107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Apichitsopa, N</creatorcontrib><creatorcontrib>Jaffe, A</creatorcontrib><creatorcontrib>Voldman, J</creatorcontrib><title>Multiparameter cell-tracking intrinsic cytometry for single-cell characterization</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>An abundance of label-free microfluidic techniques for measuring cell intrinsic markers exists, yet these techniques are seldom combined because of integration complexity such as restricted physical space and incompatible modes of operation. We introduce a multiparameter intrinsic cytometry approach for the characterization of single cells that combines ≥2 label-free measurement techniques onto the same platform and uses cell tracking to associate the measured properties to cells. Our proof-of-concept implementation can measure up to five intrinsic properties including size, deformability, and polarizability at three frequencies. Each measurement module along with the integrated platform were validated and evaluated in the context of chemically induced changes in the actin cytoskeleton of cells. viSNE and machine learning classification were used to determine the orthogonality between and the contribution of the measured intrinsic markers for cell classification. We introduce a multiparameter intrinsic cytometry approach for single-cell characterization that combines ≥2 label-free measurement techniques onto the same platform.</description><subject>Classification</subject><subject>Cytometry</subject><subject>Deformation</subject><subject>Formability</subject><subject>Machine learning</subject><subject>Markers</subject><subject>Measurement techniques</subject><subject>Organic chemistry</subject><subject>Orthogonality</subject><subject>Tracking</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgiqurF-9KwYsI1UmTNMlxKX7Bigh6LmmaaNZ-rEl7WH-9rbuu4CmBeWYY3kHoBMMVBiKvtag0QEJB7aADTDmJAQu5u_1LPkGHISwAMKOp2EeTRKaCY-AH6Pmxrzq3VF7VpjM-0qaq4s4r_eGat8g1nXdNcDrSq64dhF9FtvVRGIqViUcc6fehWQ-97kt1rm2O0J5VVTDHm3eKXm9vXrL7eP5095DN5rGmPO1iy7glhSSMlsSawhaUK6rKkjEloEwEBaxIaUtaANcqFYxZy0SirSwKzbEgU3Sxnrv07WdvQpfXLowbqca0fcgTIBiSVCYjPf9HF23vm2G7UUnMgMGoLtdK-zYEb2y-9K5WfpVjyMeg80zMs5-gZwM-24zsi9qUW_qb7ABO18AHva3-XYp8A62Gg5A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Apichitsopa, N</creator><creator>Jaffe, A</creator><creator>Voldman, J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7705-4467</orcidid><orcidid>https://orcid.org/0000-0001-8045-5053</orcidid></search><sort><creationdate>20180101</creationdate><title>Multiparameter cell-tracking intrinsic cytometry for single-cell characterization</title><author>Apichitsopa, N ; Jaffe, A ; Voldman, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-f57f3b9354d3febfb47a4add55a80d28401a3dfd4b07ca6855ff582cf9bbc7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Cytometry</topic><topic>Deformation</topic><topic>Formability</topic><topic>Machine learning</topic><topic>Markers</topic><topic>Measurement techniques</topic><topic>Organic chemistry</topic><topic>Orthogonality</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apichitsopa, N</creatorcontrib><creatorcontrib>Jaffe, A</creatorcontrib><creatorcontrib>Voldman, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apichitsopa, N</au><au>Jaffe, A</au><au>Voldman, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiparameter cell-tracking intrinsic cytometry for single-cell characterization</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>18</volume><issue>1</issue><spage>143</spage><epage>1439</epage><pages>143-1439</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>An abundance of label-free microfluidic techniques for measuring cell intrinsic markers exists, yet these techniques are seldom combined because of integration complexity such as restricted physical space and incompatible modes of operation. We introduce a multiparameter intrinsic cytometry approach for the characterization of single cells that combines ≥2 label-free measurement techniques onto the same platform and uses cell tracking to associate the measured properties to cells. Our proof-of-concept implementation can measure up to five intrinsic properties including size, deformability, and polarizability at three frequencies. Each measurement module along with the integrated platform were validated and evaluated in the context of chemically induced changes in the actin cytoskeleton of cells. viSNE and machine learning classification were used to determine the orthogonality between and the contribution of the measured intrinsic markers for cell classification. We introduce a multiparameter intrinsic cytometry approach for single-cell characterization that combines ≥2 label-free measurement techniques onto the same platform.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29687107</pmid><doi>10.1039/c8lc00240a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7705-4467</orcidid><orcidid>https://orcid.org/0000-0001-8045-5053</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2018-01, Vol.18 (1), p.143-1439
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_2031026928
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Classification
Cytometry
Deformation
Formability
Machine learning
Markers
Measurement techniques
Organic chemistry
Orthogonality
Tracking
title Multiparameter cell-tracking intrinsic cytometry for single-cell characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiparameter%20cell-tracking%20intrinsic%20cytometry%20for%20single-cell%20characterization&rft.jtitle=Lab%20on%20a%20chip&rft.au=Apichitsopa,%20N&rft.date=2018-01-01&rft.volume=18&rft.issue=1&rft.spage=143&rft.epage=1439&rft.pages=143-1439&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c8lc00240a&rft_dat=%3Cproquest_pubme%3E2031026928%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039150508&rft_id=info:pmid/29687107&rfr_iscdi=true