Strategies for In Vivo Genome Editing in Nondividing Cells
Programmable nucleases, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have enhanced our ability to edit genomes by the sequence-specific generation o...
Gespeichert in:
Veröffentlicht in: | Trends in biotechnology (Regular ed.) 2018-08, Vol.36 (8), p.770-786 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 8 |
container_start_page | 770 |
container_title | Trends in biotechnology (Regular ed.) |
container_volume | 36 |
creator | Nami, Fatemeharefeh Basiri, Mohsen Satarian, Leila Curtiss, Cameron Baharvand, Hossein Verfaillie, Catherine |
description | Programmable nucleases, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have enhanced our ability to edit genomes by the sequence-specific generation of double-strand breaks (DSBs) with subsequent homology-directed repair (HDR) of the DSB. However, the efficiency of the HDR pathway is limited in nondividing cells, which encompass most of the cells in the body. Therefore, the HDR-mediated genome-editing approach has limited in vivo applicability. Here, we discuss a mutation type-oriented viewpoint of strategies devised over the past few years to circumvent this problem, along with their possible applications and limitations.
To bypass the problem of HDR inefficiency in nondividing cells, HDR-independent strategies are being developed to efficiently manipulate the genomes of these cells.
These strategies can be categorised into two main groups based on whether a donor template is required.
The type of mutation to be targeted dictates the choice of editing approach.
Several novel approaches, including homology-independent targeted integration (HITI), obligate ligation-gated recombination (ObLiGaRe), precise integration into target chromosome (PITCH), recombinase Cas9 (RecCas9), homology-mediated end-joining (HMEJ), and base editing, have been described, some of which have been shown to be efficient both in vivo and in nondividing cells.
However, the in vivo editing efficiency, possible off-targets, or creation of translocations, need to be further evaluated. |
doi_str_mv | 10.1016/j.tibtech.2018.03.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2031024920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016777991830088X</els_id><sourcerecordid>2071531024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-ef426b448ccae0a7c9389d4c15bacf8f431486a7742fb4ede445ffefb923401f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_grLgxcuuySa7SbyIlFoLRQ9-XMNudlJT2k1NtgX_vamtHrx4ehl4ZublQeic4IxgUl7Ps87WHej3LMdEZJhmGLMD1CeCy5RiWR6ifuR4yrmUPXQSwhxjTLkkx6iXy1IUgog-unnufNXBzEJIjPPJpE3e7MYlY2jdEpJRYzvbzhLbJo-ubezGNttxCItFOEVHploEONvnAL3ej16GD-n0aTwZ3k1TzTjvUjAsL2vGhNYV4IprSYVsmCZFXWkjDKOEibLinOWmZtAAY4UxYGqZU4aJoQN0tbu78u5jDaFTSxt0bFC14NZB5ZgSnDMZc4Au_6Bzt_ZtbBcpTopvMFLFjtLeheDBqJW3y8p_KoLVVq6aq71ctZWrMFVRbty72F9f10tofrd-bEbgdgdA1LGx4FXQFloNjfWgO9U4-8-LL3Mci_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071531024</pqid></control><display><type>article</type><title>Strategies for In Vivo Genome Editing in Nondividing Cells</title><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Nami, Fatemeharefeh ; Basiri, Mohsen ; Satarian, Leila ; Curtiss, Cameron ; Baharvand, Hossein ; Verfaillie, Catherine</creator><creatorcontrib>Nami, Fatemeharefeh ; Basiri, Mohsen ; Satarian, Leila ; Curtiss, Cameron ; Baharvand, Hossein ; Verfaillie, Catherine</creatorcontrib><description>Programmable nucleases, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have enhanced our ability to edit genomes by the sequence-specific generation of double-strand breaks (DSBs) with subsequent homology-directed repair (HDR) of the DSB. However, the efficiency of the HDR pathway is limited in nondividing cells, which encompass most of the cells in the body. Therefore, the HDR-mediated genome-editing approach has limited in vivo applicability. Here, we discuss a mutation type-oriented viewpoint of strategies devised over the past few years to circumvent this problem, along with their possible applications and limitations.
To bypass the problem of HDR inefficiency in nondividing cells, HDR-independent strategies are being developed to efficiently manipulate the genomes of these cells.
These strategies can be categorised into two main groups based on whether a donor template is required.
The type of mutation to be targeted dictates the choice of editing approach.
Several novel approaches, including homology-independent targeted integration (HITI), obligate ligation-gated recombination (ObLiGaRe), precise integration into target chromosome (PITCH), recombinase Cas9 (RecCas9), homology-mediated end-joining (HMEJ), and base editing, have been described, some of which have been shown to be efficient both in vivo and in nondividing cells.
However, the in vivo editing efficiency, possible off-targets, or creation of translocations, need to be further evaluated.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2018.03.004</identifier><identifier>PMID: 29685818</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cardiomyocytes ; Cell cycle ; CRISPR ; Deoxyribonucleic acid ; Disease ; DNA ; DNA repair ; Editing ; Efficiency ; gene editing ; Gene expression ; Genetic engineering ; Genome editing ; Genomes ; Hemophilia ; Homology ; homology directed repair ; in vivo ; Liver ; Mutation ; non-dividing cells ; non-homologous end joining ; Nuclease ; Proteins ; Stem cells ; Transcription ; Transcription activator-like effector nucleases ; Zinc finger proteins</subject><ispartof>Trends in biotechnology (Regular ed.), 2018-08, Vol.36 (8), p.770-786</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-ef426b448ccae0a7c9389d4c15bacf8f431486a7742fb4ede445ffefb923401f3</citedby><cites>FETCH-LOGICAL-c477t-ef426b448ccae0a7c9389d4c15bacf8f431486a7742fb4ede445ffefb923401f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071531024?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29685818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nami, Fatemeharefeh</creatorcontrib><creatorcontrib>Basiri, Mohsen</creatorcontrib><creatorcontrib>Satarian, Leila</creatorcontrib><creatorcontrib>Curtiss, Cameron</creatorcontrib><creatorcontrib>Baharvand, Hossein</creatorcontrib><creatorcontrib>Verfaillie, Catherine</creatorcontrib><title>Strategies for In Vivo Genome Editing in Nondividing Cells</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Programmable nucleases, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have enhanced our ability to edit genomes by the sequence-specific generation of double-strand breaks (DSBs) with subsequent homology-directed repair (HDR) of the DSB. However, the efficiency of the HDR pathway is limited in nondividing cells, which encompass most of the cells in the body. Therefore, the HDR-mediated genome-editing approach has limited in vivo applicability. Here, we discuss a mutation type-oriented viewpoint of strategies devised over the past few years to circumvent this problem, along with their possible applications and limitations.
To bypass the problem of HDR inefficiency in nondividing cells, HDR-independent strategies are being developed to efficiently manipulate the genomes of these cells.
These strategies can be categorised into two main groups based on whether a donor template is required.
The type of mutation to be targeted dictates the choice of editing approach.
Several novel approaches, including homology-independent targeted integration (HITI), obligate ligation-gated recombination (ObLiGaRe), precise integration into target chromosome (PITCH), recombinase Cas9 (RecCas9), homology-mediated end-joining (HMEJ), and base editing, have been described, some of which have been shown to be efficient both in vivo and in nondividing cells.
However, the in vivo editing efficiency, possible off-targets, or creation of translocations, need to be further evaluated.</description><subject>Cardiomyocytes</subject><subject>Cell cycle</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>Disease</subject><subject>DNA</subject><subject>DNA repair</subject><subject>Editing</subject><subject>Efficiency</subject><subject>gene editing</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Hemophilia</subject><subject>Homology</subject><subject>homology directed repair</subject><subject>in vivo</subject><subject>Liver</subject><subject>Mutation</subject><subject>non-dividing cells</subject><subject>non-homologous end joining</subject><subject>Nuclease</subject><subject>Proteins</subject><subject>Stem cells</subject><subject>Transcription</subject><subject>Transcription activator-like effector nucleases</subject><subject>Zinc finger proteins</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1LAzEQhoMotlZ_grLgxcuuySa7SbyIlFoLRQ9-XMNudlJT2k1NtgX_vamtHrx4ehl4ZublQeic4IxgUl7Ps87WHej3LMdEZJhmGLMD1CeCy5RiWR6ifuR4yrmUPXQSwhxjTLkkx6iXy1IUgog-unnufNXBzEJIjPPJpE3e7MYlY2jdEpJRYzvbzhLbJo-ubezGNttxCItFOEVHploEONvnAL3ej16GD-n0aTwZ3k1TzTjvUjAsL2vGhNYV4IprSYVsmCZFXWkjDKOEibLinOWmZtAAY4UxYGqZU4aJoQN0tbu78u5jDaFTSxt0bFC14NZB5ZgSnDMZc4Au_6Bzt_ZtbBcpTopvMFLFjtLeheDBqJW3y8p_KoLVVq6aq71ctZWrMFVRbty72F9f10tofrd-bEbgdgdA1LGx4FXQFloNjfWgO9U4-8-LL3Mci_8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Nami, Fatemeharefeh</creator><creator>Basiri, Mohsen</creator><creator>Satarian, Leila</creator><creator>Curtiss, Cameron</creator><creator>Baharvand, Hossein</creator><creator>Verfaillie, Catherine</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180801</creationdate><title>Strategies for In Vivo Genome Editing in Nondividing Cells</title><author>Nami, Fatemeharefeh ; Basiri, Mohsen ; Satarian, Leila ; Curtiss, Cameron ; Baharvand, Hossein ; Verfaillie, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-ef426b448ccae0a7c9389d4c15bacf8f431486a7742fb4ede445ffefb923401f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cardiomyocytes</topic><topic>Cell cycle</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>Disease</topic><topic>DNA</topic><topic>DNA repair</topic><topic>Editing</topic><topic>Efficiency</topic><topic>gene editing</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Hemophilia</topic><topic>Homology</topic><topic>homology directed repair</topic><topic>in vivo</topic><topic>Liver</topic><topic>Mutation</topic><topic>non-dividing cells</topic><topic>non-homologous end joining</topic><topic>Nuclease</topic><topic>Proteins</topic><topic>Stem cells</topic><topic>Transcription</topic><topic>Transcription activator-like effector nucleases</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nami, Fatemeharefeh</creatorcontrib><creatorcontrib>Basiri, Mohsen</creatorcontrib><creatorcontrib>Satarian, Leila</creatorcontrib><creatorcontrib>Curtiss, Cameron</creatorcontrib><creatorcontrib>Baharvand, Hossein</creatorcontrib><creatorcontrib>Verfaillie, Catherine</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nami, Fatemeharefeh</au><au>Basiri, Mohsen</au><au>Satarian, Leila</au><au>Curtiss, Cameron</au><au>Baharvand, Hossein</au><au>Verfaillie, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for In Vivo Genome Editing in Nondividing Cells</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>36</volume><issue>8</issue><spage>770</spage><epage>786</epage><pages>770-786</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Programmable nucleases, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have enhanced our ability to edit genomes by the sequence-specific generation of double-strand breaks (DSBs) with subsequent homology-directed repair (HDR) of the DSB. However, the efficiency of the HDR pathway is limited in nondividing cells, which encompass most of the cells in the body. Therefore, the HDR-mediated genome-editing approach has limited in vivo applicability. Here, we discuss a mutation type-oriented viewpoint of strategies devised over the past few years to circumvent this problem, along with their possible applications and limitations.
To bypass the problem of HDR inefficiency in nondividing cells, HDR-independent strategies are being developed to efficiently manipulate the genomes of these cells.
These strategies can be categorised into two main groups based on whether a donor template is required.
The type of mutation to be targeted dictates the choice of editing approach.
Several novel approaches, including homology-independent targeted integration (HITI), obligate ligation-gated recombination (ObLiGaRe), precise integration into target chromosome (PITCH), recombinase Cas9 (RecCas9), homology-mediated end-joining (HMEJ), and base editing, have been described, some of which have been shown to be efficient both in vivo and in nondividing cells.
However, the in vivo editing efficiency, possible off-targets, or creation of translocations, need to be further evaluated.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29685818</pmid><doi>10.1016/j.tibtech.2018.03.004</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7799 |
ispartof | Trends in biotechnology (Regular ed.), 2018-08, Vol.36 (8), p.770-786 |
issn | 0167-7799 1879-3096 |
language | eng |
recordid | cdi_proquest_miscellaneous_2031024920 |
source | Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | Cardiomyocytes Cell cycle CRISPR Deoxyribonucleic acid Disease DNA DNA repair Editing Efficiency gene editing Gene expression Genetic engineering Genome editing Genomes Hemophilia Homology homology directed repair in vivo Liver Mutation non-dividing cells non-homologous end joining Nuclease Proteins Stem cells Transcription Transcription activator-like effector nucleases Zinc finger proteins |
title | Strategies for In Vivo Genome Editing in Nondividing Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20In%20Vivo%20Genome%20Editing%20in%20Nondividing%20Cells&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Nami,%20Fatemeharefeh&rft.date=2018-08-01&rft.volume=36&rft.issue=8&rft.spage=770&rft.epage=786&rft.pages=770-786&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2018.03.004&rft_dat=%3Cproquest_cross%3E2071531024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071531024&rft_id=info:pmid/29685818&rft_els_id=S016777991830088X&rfr_iscdi=true |