Effect of pelvis impact angle on stresses at the femoral neck during falls

Improved understanding is required of how the mechanics of the fall affect hip fracture risk. We used a hip impact simulator to determine how peak stresses at the femoral neck were affected by pelvis impact angle, hip abductor muscle force, and use of a wearable hip protector. We simulated falls fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2018-06, Vol.74, p.41-49
Hauptverfasser: Choi, W.J., Robinovitch, S.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue
container_start_page 41
container_title Journal of biomechanics
container_volume 74
creator Choi, W.J.
Robinovitch, S.N.
description Improved understanding is required of how the mechanics of the fall affect hip fracture risk. We used a hip impact simulator to determine how peak stresses at the femoral neck were affected by pelvis impact angle, hip abductor muscle force, and use of a wearable hip protector. We simulated falls from standing (2 m/s impact velocity) involving initial hip abductor muscle forces of 700 or 300 N. Trials were acquired for impact to the lateral aspect of the greater trochanter, and impact to the pelvis rotated 5°, 10° and 15° anteriorly (positive) or posteriorly (negative). Measures were acquired with and without a commercially available hip protector. During trials, we measured three-dimensional forces with a load cell at the femoral neck, and derived peak compressive and tensile stresses. Peak compressive stress increased 37% (5.91 versus 4.31 MPa; p 
doi_str_mv 10.1016/j.jbiomech.2018.04.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2030933633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929018302884</els_id><sourcerecordid>2030933633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-26785c6fa5ae99c37c167010a41b661067f492df647f862c79ce27b8e8664bd23</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EotvCX6gsceGSMLaz_riBqgJFlbjA2XKcceuQxIudVOq_x6ttOXDhNNLoed8ZPYRcMmgZMPlhbMc-phn9fcuB6Ra6Ftj-BdkxrUTDhYaXZAfAWWO4gTNyXsoIAKpT5jU540YaBnuxI9-uQ0C_0hToAaeHWGicD64u3HI3IU0LLWvGUrBQt9L1HmnAOWU30QX9LzpsOS53NLhpKm_IqzoLvn2aF-Tn5-sfV1-b2-9fbq4-3Ta-k3xtuFR672Vwe4fGeKE8kwoYuI71UjKQKnSGD0F2KmjJvTIeueo1aim7fuDigrw_9R5y-r1hWe0ci8dpcgumrVgOAowQUoiKvvsHHdOWl_rdkTKaSQ1HSp4on1MpGYM95Di7_GgZ2KNtO9pn2_Zo20Jnq-0avHyq3_oZh7-xZ70V-HgCsPp4iJht8REXj0PM1bodUvzfjT9sFJHT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039816803</pqid></control><display><type>article</type><title>Effect of pelvis impact angle on stresses at the femoral neck during falls</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Choi, W.J. ; Robinovitch, S.N.</creator><creatorcontrib>Choi, W.J. ; Robinovitch, S.N.</creatorcontrib><description>Improved understanding is required of how the mechanics of the fall affect hip fracture risk. We used a hip impact simulator to determine how peak stresses at the femoral neck were affected by pelvis impact angle, hip abductor muscle force, and use of a wearable hip protector. We simulated falls from standing (2 m/s impact velocity) involving initial hip abductor muscle forces of 700 or 300 N. Trials were acquired for impact to the lateral aspect of the greater trochanter, and impact to the pelvis rotated 5°, 10° and 15° anteriorly (positive) or posteriorly (negative). Measures were acquired with and without a commercially available hip protector. During trials, we measured three-dimensional forces with a load cell at the femoral neck, and derived peak compressive and tensile stresses. Peak compressive stress increased 37% (5.91 versus 4.31 MPa; p &lt; 0.0005) and peak tensile stress increased 209% (2.31 versus 0.75 MPa; p &lt; 0.0005) when the pelvis impact angle changed from 15° anterior to −15° posterior. For lateral impacts, the peak tensile and compressive stresses averaged 73% and 8% lower, respectively, in the 700 N than 300 N muscle force condition, but the effect was reversed for anteriolateral or posteriolateral impacts. The attenuation in peak compressive stress from the hip protector was greatest for posteriolateral impacts (−15 to −5°; 36–41%), and least for anteriolateral (+15°; 10%). These results clarify the effects on hip fracture risk during a fall of pelvis impact angle and muscle forces, and should inform the design of improved hip protectors.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2018.04.015</identifier><identifier>PMID: 29691053</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accidental Falls ; Attenuation ; Biomechanical Phenomena ; Biomedical materials ; Compressive properties ; Falls ; Femur ; Femur Neck - physiology ; Fractures ; Hip ; Hip fracture ; Hip protector ; Humans ; Impact angle ; Impact velocity ; Laboratories ; Load ; Load cells ; Muscle force ; Muscles ; Pelvis ; Pelvis - physiology ; Pressure ; Protectors ; Stress analysis ; Stress, Mechanical ; Surgical implants ; Tensile Strength ; Tensile stress ; Trochanter</subject><ispartof>Journal of biomechanics, 2018-06, Vol.74, p.41-49</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><rights>2018. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-26785c6fa5ae99c37c167010a41b661067f492df647f862c79ce27b8e8664bd23</citedby><cites>FETCH-LOGICAL-c462t-26785c6fa5ae99c37c167010a41b661067f492df647f862c79ce27b8e8664bd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2039816803?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,64361,64363,64365,65309,72215</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29691053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, W.J.</creatorcontrib><creatorcontrib>Robinovitch, S.N.</creatorcontrib><title>Effect of pelvis impact angle on stresses at the femoral neck during falls</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Improved understanding is required of how the mechanics of the fall affect hip fracture risk. We used a hip impact simulator to determine how peak stresses at the femoral neck were affected by pelvis impact angle, hip abductor muscle force, and use of a wearable hip protector. We simulated falls from standing (2 m/s impact velocity) involving initial hip abductor muscle forces of 700 or 300 N. Trials were acquired for impact to the lateral aspect of the greater trochanter, and impact to the pelvis rotated 5°, 10° and 15° anteriorly (positive) or posteriorly (negative). Measures were acquired with and without a commercially available hip protector. During trials, we measured three-dimensional forces with a load cell at the femoral neck, and derived peak compressive and tensile stresses. Peak compressive stress increased 37% (5.91 versus 4.31 MPa; p &lt; 0.0005) and peak tensile stress increased 209% (2.31 versus 0.75 MPa; p &lt; 0.0005) when the pelvis impact angle changed from 15° anterior to −15° posterior. For lateral impacts, the peak tensile and compressive stresses averaged 73% and 8% lower, respectively, in the 700 N than 300 N muscle force condition, but the effect was reversed for anteriolateral or posteriolateral impacts. The attenuation in peak compressive stress from the hip protector was greatest for posteriolateral impacts (−15 to −5°; 36–41%), and least for anteriolateral (+15°; 10%). These results clarify the effects on hip fracture risk during a fall of pelvis impact angle and muscle forces, and should inform the design of improved hip protectors.</description><subject>Accidental Falls</subject><subject>Attenuation</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical materials</subject><subject>Compressive properties</subject><subject>Falls</subject><subject>Femur</subject><subject>Femur Neck - physiology</subject><subject>Fractures</subject><subject>Hip</subject><subject>Hip fracture</subject><subject>Hip protector</subject><subject>Humans</subject><subject>Impact angle</subject><subject>Impact velocity</subject><subject>Laboratories</subject><subject>Load</subject><subject>Load cells</subject><subject>Muscle force</subject><subject>Muscles</subject><subject>Pelvis</subject><subject>Pelvis - physiology</subject><subject>Pressure</subject><subject>Protectors</subject><subject>Stress analysis</subject><subject>Stress, Mechanical</subject><subject>Surgical implants</subject><subject>Tensile Strength</subject><subject>Tensile stress</subject><subject>Trochanter</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1v1DAQhi0EotvCX6gsceGSMLaz_riBqgJFlbjA2XKcceuQxIudVOq_x6ttOXDhNNLoed8ZPYRcMmgZMPlhbMc-phn9fcuB6Ra6Ftj-BdkxrUTDhYaXZAfAWWO4gTNyXsoIAKpT5jU540YaBnuxI9-uQ0C_0hToAaeHWGicD64u3HI3IU0LLWvGUrBQt9L1HmnAOWU30QX9LzpsOS53NLhpKm_IqzoLvn2aF-Tn5-sfV1-b2-9fbq4-3Ta-k3xtuFR672Vwe4fGeKE8kwoYuI71UjKQKnSGD0F2KmjJvTIeueo1aim7fuDigrw_9R5y-r1hWe0ci8dpcgumrVgOAowQUoiKvvsHHdOWl_rdkTKaSQ1HSp4on1MpGYM95Di7_GgZ2KNtO9pn2_Zo20Jnq-0avHyq3_oZh7-xZ70V-HgCsPp4iJht8REXj0PM1bodUvzfjT9sFJHT</recordid><startdate>20180606</startdate><enddate>20180606</enddate><creator>Choi, W.J.</creator><creator>Robinovitch, S.N.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180606</creationdate><title>Effect of pelvis impact angle on stresses at the femoral neck during falls</title><author>Choi, W.J. ; Robinovitch, S.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-26785c6fa5ae99c37c167010a41b661067f492df647f862c79ce27b8e8664bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accidental Falls</topic><topic>Attenuation</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical materials</topic><topic>Compressive properties</topic><topic>Falls</topic><topic>Femur</topic><topic>Femur Neck - physiology</topic><topic>Fractures</topic><topic>Hip</topic><topic>Hip fracture</topic><topic>Hip protector</topic><topic>Humans</topic><topic>Impact angle</topic><topic>Impact velocity</topic><topic>Laboratories</topic><topic>Load</topic><topic>Load cells</topic><topic>Muscle force</topic><topic>Muscles</topic><topic>Pelvis</topic><topic>Pelvis - physiology</topic><topic>Pressure</topic><topic>Protectors</topic><topic>Stress analysis</topic><topic>Stress, Mechanical</topic><topic>Surgical implants</topic><topic>Tensile Strength</topic><topic>Tensile stress</topic><topic>Trochanter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, W.J.</creatorcontrib><creatorcontrib>Robinovitch, S.N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, W.J.</au><au>Robinovitch, S.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of pelvis impact angle on stresses at the femoral neck during falls</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2018-06-06</date><risdate>2018</risdate><volume>74</volume><spage>41</spage><epage>49</epage><pages>41-49</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Improved understanding is required of how the mechanics of the fall affect hip fracture risk. We used a hip impact simulator to determine how peak stresses at the femoral neck were affected by pelvis impact angle, hip abductor muscle force, and use of a wearable hip protector. We simulated falls from standing (2 m/s impact velocity) involving initial hip abductor muscle forces of 700 or 300 N. Trials were acquired for impact to the lateral aspect of the greater trochanter, and impact to the pelvis rotated 5°, 10° and 15° anteriorly (positive) or posteriorly (negative). Measures were acquired with and without a commercially available hip protector. During trials, we measured three-dimensional forces with a load cell at the femoral neck, and derived peak compressive and tensile stresses. Peak compressive stress increased 37% (5.91 versus 4.31 MPa; p &lt; 0.0005) and peak tensile stress increased 209% (2.31 versus 0.75 MPa; p &lt; 0.0005) when the pelvis impact angle changed from 15° anterior to −15° posterior. For lateral impacts, the peak tensile and compressive stresses averaged 73% and 8% lower, respectively, in the 700 N than 300 N muscle force condition, but the effect was reversed for anteriolateral or posteriolateral impacts. The attenuation in peak compressive stress from the hip protector was greatest for posteriolateral impacts (−15 to −5°; 36–41%), and least for anteriolateral (+15°; 10%). These results clarify the effects on hip fracture risk during a fall of pelvis impact angle and muscle forces, and should inform the design of improved hip protectors.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>29691053</pmid><doi>10.1016/j.jbiomech.2018.04.015</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2018-06, Vol.74, p.41-49
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_2030933633
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Accidental Falls
Attenuation
Biomechanical Phenomena
Biomedical materials
Compressive properties
Falls
Femur
Femur Neck - physiology
Fractures
Hip
Hip fracture
Hip protector
Humans
Impact angle
Impact velocity
Laboratories
Load
Load cells
Muscle force
Muscles
Pelvis
Pelvis - physiology
Pressure
Protectors
Stress analysis
Stress, Mechanical
Surgical implants
Tensile Strength
Tensile stress
Trochanter
title Effect of pelvis impact angle on stresses at the femoral neck during falls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20pelvis%20impact%20angle%20on%20stresses%20at%20the%20femoral%20neck%20during%20falls&rft.jtitle=Journal%20of%20biomechanics&rft.au=Choi,%20W.J.&rft.date=2018-06-06&rft.volume=74&rft.spage=41&rft.epage=49&rft.pages=41-49&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2018.04.015&rft_dat=%3Cproquest_cross%3E2030933633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039816803&rft_id=info:pmid/29691053&rft_els_id=S0021929018302884&rfr_iscdi=true