Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations
Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas tem...
Gespeichert in:
Veröffentlicht in: | Brain topography 2018-09, Vol.31 (5), p.767-779 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 779 |
---|---|
container_issue | 5 |
container_start_page | 767 |
container_title | Brain topography |
container_volume | 31 |
creator | Gajdoš, Martin Výtvarová, Eva Fousek, Jan Lamoš, Martin Mikl, Michal |
description | Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal. |
doi_str_mv | 10.1007/s10548-018-0647-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2030923886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030923886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-b667e97263e99bd6bbbde629b191419716aec8caeb948aca38ff9e7f64d06aeb3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK3-AC8S8OIluh_pbvZY6ycUlGovXpbdZFJS0qTubgT_vZumKggehoGZZ96ZeRE6JfiSYCyuHMHjJI0xCcETEfM9NCRjwWIuJN1HQ5xKHmPKxQAdObfCGDMpxCEaUMklo3g8RG_zxrTO1-Bc1BTRHDYWHNRe-_IDopdyWevKhXLVF3wT3Wivo1kT-IUr62U08ZV28bV2kEfP2mZQdWxTu2N0UIRhONnlEVrc3b5OH-LZ0_3jdDKLMyaojw3nAqSgnIGUJufGmBw4lYZIkhApCNeQpZkGI5NUZ5qlRSFBFDzJcWgZNkIXve7GNu8tOK_WpdueUUPTOkUxw5KyNOUBPf-DrprWdi9uKczSEIEiPZXZ8KaFQm1sudb2UxGsOuNVb7wKxqvOeNUpn-2UW7OG_Gfi2-kA0B5woVUvwf6u_l_1CwzDjkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030038003</pqid></control><display><type>article</type><title>Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gajdoš, Martin ; Výtvarová, Eva ; Fousek, Jan ; Lamoš, Martin ; Mikl, Michal</creator><creatorcontrib>Gajdoš, Martin ; Výtvarová, Eva ; Fousek, Jan ; Lamoš, Martin ; Mikl, Michal</creatorcontrib><description>Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal.</description><identifier>ISSN: 0896-0267</identifier><identifier>EISSN: 1573-6792</identifier><identifier>DOI: 10.1007/s10548-018-0647-6</identifier><identifier>PMID: 29693205</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Brain mapping ; Data integrity ; Data processing ; Functional magnetic resonance imaging ; Neuroimaging ; Neurology ; Neurosciences ; NMR ; Nuclear magnetic resonance ; Original Paper ; Psychiatry</subject><ispartof>Brain topography, 2018-09, Vol.31 (5), p.767-779</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Brain Topography is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-b667e97263e99bd6bbbde629b191419716aec8caeb948aca38ff9e7f64d06aeb3</citedby><cites>FETCH-LOGICAL-c372t-b667e97263e99bd6bbbde629b191419716aec8caeb948aca38ff9e7f64d06aeb3</cites><orcidid>0000-0003-1190-346X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10548-018-0647-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10548-018-0647-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29693205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gajdoš, Martin</creatorcontrib><creatorcontrib>Výtvarová, Eva</creatorcontrib><creatorcontrib>Fousek, Jan</creatorcontrib><creatorcontrib>Lamoš, Martin</creatorcontrib><creatorcontrib>Mikl, Michal</creatorcontrib><title>Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations</title><title>Brain topography</title><addtitle>Brain Topogr</addtitle><addtitle>Brain Topogr</addtitle><description>Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain mapping</subject><subject>Data integrity</subject><subject>Data processing</subject><subject>Functional magnetic resonance imaging</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Original Paper</subject><subject>Psychiatry</subject><issn>0896-0267</issn><issn>1573-6792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AQhhdRbK3-AC8S8OIluh_pbvZY6ycUlGovXpbdZFJS0qTubgT_vZumKggehoGZZ96ZeRE6JfiSYCyuHMHjJI0xCcETEfM9NCRjwWIuJN1HQ5xKHmPKxQAdObfCGDMpxCEaUMklo3g8RG_zxrTO1-Bc1BTRHDYWHNRe-_IDopdyWevKhXLVF3wT3Wivo1kT-IUr62U08ZV28bV2kEfP2mZQdWxTu2N0UIRhONnlEVrc3b5OH-LZ0_3jdDKLMyaojw3nAqSgnIGUJufGmBw4lYZIkhApCNeQpZkGI5NUZ5qlRSFBFDzJcWgZNkIXve7GNu8tOK_WpdueUUPTOkUxw5KyNOUBPf-DrprWdi9uKczSEIEiPZXZ8KaFQm1sudb2UxGsOuNVb7wKxqvOeNUpn-2UW7OG_Gfi2-kA0B5woVUvwf6u_l_1CwzDjkg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Gajdoš, Martin</creator><creator>Výtvarová, Eva</creator><creator>Fousek, Jan</creator><creator>Lamoš, Martin</creator><creator>Mikl, Michal</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1190-346X</orcidid></search><sort><creationdate>20180901</creationdate><title>Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations</title><author>Gajdoš, Martin ; Výtvarová, Eva ; Fousek, Jan ; Lamoš, Martin ; Mikl, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-b667e97263e99bd6bbbde629b191419716aec8caeb948aca38ff9e7f64d06aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain mapping</topic><topic>Data integrity</topic><topic>Data processing</topic><topic>Functional magnetic resonance imaging</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Original Paper</topic><topic>Psychiatry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gajdoš, Martin</creatorcontrib><creatorcontrib>Výtvarová, Eva</creatorcontrib><creatorcontrib>Fousek, Jan</creatorcontrib><creatorcontrib>Lamoš, Martin</creatorcontrib><creatorcontrib>Mikl, Michal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain topography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajdoš, Martin</au><au>Výtvarová, Eva</au><au>Fousek, Jan</au><au>Lamoš, Martin</au><au>Mikl, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations</atitle><jtitle>Brain topography</jtitle><stitle>Brain Topogr</stitle><addtitle>Brain Topogr</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>31</volume><issue>5</issue><spage>767</spage><epage>779</epage><pages>767-779</pages><issn>0896-0267</issn><eissn>1573-6792</eissn><abstract>Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29693205</pmid><doi>10.1007/s10548-018-0647-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1190-346X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-0267 |
ispartof | Brain topography, 2018-09, Vol.31 (5), p.767-779 |
issn | 0896-0267 1573-6792 |
language | eng |
recordid | cdi_proquest_miscellaneous_2030923886 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biomedicine Brain mapping Data integrity Data processing Functional magnetic resonance imaging Neuroimaging Neurology Neurosciences NMR Nuclear magnetic resonance Original Paper Psychiatry |
title | Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20Representative%20Signals%20Relative%20to%20Data%20Loss%20Using%20Atlas-Based%20Parcellations&rft.jtitle=Brain%20topography&rft.au=Gajdo%C5%A1,%20Martin&rft.date=2018-09-01&rft.volume=31&rft.issue=5&rft.spage=767&rft.epage=779&rft.pages=767-779&rft.issn=0896-0267&rft.eissn=1573-6792&rft_id=info:doi/10.1007/s10548-018-0647-6&rft_dat=%3Cproquest_cross%3E2030923886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030038003&rft_id=info:pmid/29693205&rfr_iscdi=true |