1,3‐Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates

The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL‐CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2018-07, Vol.34 (4), p.910-920
Hauptverfasser: Ramos, Margarita D., Miranda, Letícia P., Giordano, Raquel L. C., Fernandez‐Lafuente, Roberto, Kopp, William, Tardioli, Paulo W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 920
container_issue 4
container_start_page 910
container_title Biotechnology progress
container_volume 34
creator Ramos, Margarita D.
Miranda, Letícia P.
Giordano, Raquel L. C.
Fernandez‐Lafuente, Roberto
Kopp, William
Tardioli, Paulo W.
description The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL‐CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of the immobilized PPL. Standard CLEAs showed a global yield (CLEA’ observed activity/offered total activity) of less than 4%, whereas with the addition of soy protein (PPL:soy protein mass ratio of 1:3) the global yield was approximately fivefold higher. The CLEA of PPL prepared with soy protein as feeder (PPL:soy protein mass ratio of 1:3) and glutaraldehyde as crosslinking reagent (10 μmol of aldehyde groups/mg of total protein) was more active mainly because of the reduced enzyme leaching in the washing step. This CLEA, named PPL‐SOY‐CLEA, had an immobilization yield around 60% and an expressed activity around 40%. In the ethanolysis of soybean oil, the PPL‐SOY‐CLEA yielded maximum fatty acid ethyl ester (FAEE) concentration around 12‐fold higher than that achieved using soluble PPL (34 h reaction at 30°C, 300 rpm stirring, soybean oil/ethanol molar ratio of 1:5) with an enzyme load around 2‐fold lower (very likely due to free enzyme inactivation). The operational stability of the PPL‐SOY‐CLEA in the ethanolysis of soybean oil in a vortex flow type reactor showed that FAEE yield was higher than 50% during ten reaction cycles of 24 h. This reactor configuration may be an attractive alternative to the conventional stirred reactors for biotransformations in industrial plants using carrier‐free biocatalysts. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:910–920, 2018
doi_str_mv 10.1002/btpr.2636
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2030923017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030923017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3906-60559a8828646671d0a0491472e70a1a74c70f440d5a8a8e36ebe46c338d6ddf3</originalsourceid><addsrcrecordid>eNp1kc-KFDEQh4Mo7rh68AUk4EXB2a0k3Un6qIv_YEFZ1nOoTlePGTOdNulB2pOP4DP6JPbsrB4ET0XBx8ev6sfYYwFnAkCet9OYz6RW-g5biVrCWoNSd9nKmlqvTaPsCXtQyhYALGh5n53IRjdKCbNiW_FC_frx84o2IZWRfOiD5zR9xiHFuYTCU89LmlvCgacQuccJ4_ydOt7O3OdUSgzDl2UdU_ZhID7i4DNh4TGMWIjjZpNpgxOVh-xej7HQo9t5yj69eX198W59-eHt-4uXl2uvGtBL9rpu0FppdaW1ER0gVI2ojCQDKNBU3kBfVdDVaNGS0tRSpb1SttNd16tT9uzoHXP6uqcyuV0onmLEgdK-OAkKGqlAmAV9-g-6Tfs8LOmcFEKAkY2QC_X8SN3cm6l3Yw47zLMT4A4FuEMB7lDAwj65Ne7bHXV_yT8fX4DzI_AtRJr_b3Kvrj9e3Sh_A_QDkNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111072912</pqid></control><display><type>article</type><title>1,3‐Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>Ramos, Margarita D. ; Miranda, Letícia P. ; Giordano, Raquel L. C. ; Fernandez‐Lafuente, Roberto ; Kopp, William ; Tardioli, Paulo W.</creator><creatorcontrib>Ramos, Margarita D. ; Miranda, Letícia P. ; Giordano, Raquel L. C. ; Fernandez‐Lafuente, Roberto ; Kopp, William ; Tardioli, Paulo W.</creatorcontrib><description>The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL‐CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of the immobilized PPL. Standard CLEAs showed a global yield (CLEA’ observed activity/offered total activity) of less than 4%, whereas with the addition of soy protein (PPL:soy protein mass ratio of 1:3) the global yield was approximately fivefold higher. The CLEA of PPL prepared with soy protein as feeder (PPL:soy protein mass ratio of 1:3) and glutaraldehyde as crosslinking reagent (10 μmol of aldehyde groups/mg of total protein) was more active mainly because of the reduced enzyme leaching in the washing step. This CLEA, named PPL‐SOY‐CLEA, had an immobilization yield around 60% and an expressed activity around 40%. In the ethanolysis of soybean oil, the PPL‐SOY‐CLEA yielded maximum fatty acid ethyl ester (FAEE) concentration around 12‐fold higher than that achieved using soluble PPL (34 h reaction at 30°C, 300 rpm stirring, soybean oil/ethanol molar ratio of 1:5) with an enzyme load around 2‐fold lower (very likely due to free enzyme inactivation). The operational stability of the PPL‐SOY‐CLEA in the ethanolysis of soybean oil in a vortex flow type reactor showed that FAEE yield was higher than 50% during ten reaction cycles of 24 h. This reactor configuration may be an attractive alternative to the conventional stirred reactors for biotransformations in industrial plants using carrier‐free biocatalysts. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:910–920, 2018</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2636</identifier><identifier>PMID: 29693317</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Aggregates ; Animals ; Biocatalysts ; biodiesel ; Bioreactors ; Catalysis ; CLEAs ; Cross-Linking Reagents ; Crosslinking ; Deactivation ; Enzymes ; Ethanol ; Ethanol - chemistry ; Fatty acids ; Glutaraldehyde ; Immobilization ; Inactivation ; Industrial engineering ; Industrial plants ; Leaching ; Lipase ; Lipase - metabolism ; Manufacturing engineering ; Oils &amp; fats ; Organic chemistry ; Pancreas ; Pancreas - enzymology ; porcine pancreas lipase ; Proteins ; Reactors ; Reagents ; Soy products ; soy protein ; Soybean oil ; Soybean Oil - chemistry ; Soybean Oil - metabolism ; Soybeans ; Stability ; Swine ; Vegetable oils ; vortex flow reactor ; Yield</subject><ispartof>Biotechnology progress, 2018-07, Vol.34 (4), p.910-920</ispartof><rights>2018 American Institute of Chemical Engineers</rights><rights>2018 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3906-60559a8828646671d0a0491472e70a1a74c70f440d5a8a8e36ebe46c338d6ddf3</citedby><cites>FETCH-LOGICAL-c3906-60559a8828646671d0a0491472e70a1a74c70f440d5a8a8e36ebe46c338d6ddf3</cites><orcidid>0000-0002-5011-9881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2636$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2636$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29693317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos, Margarita D.</creatorcontrib><creatorcontrib>Miranda, Letícia P.</creatorcontrib><creatorcontrib>Giordano, Raquel L. C.</creatorcontrib><creatorcontrib>Fernandez‐Lafuente, Roberto</creatorcontrib><creatorcontrib>Kopp, William</creatorcontrib><creatorcontrib>Tardioli, Paulo W.</creatorcontrib><title>1,3‐Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL‐CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of the immobilized PPL. Standard CLEAs showed a global yield (CLEA’ observed activity/offered total activity) of less than 4%, whereas with the addition of soy protein (PPL:soy protein mass ratio of 1:3) the global yield was approximately fivefold higher. The CLEA of PPL prepared with soy protein as feeder (PPL:soy protein mass ratio of 1:3) and glutaraldehyde as crosslinking reagent (10 μmol of aldehyde groups/mg of total protein) was more active mainly because of the reduced enzyme leaching in the washing step. This CLEA, named PPL‐SOY‐CLEA, had an immobilization yield around 60% and an expressed activity around 40%. In the ethanolysis of soybean oil, the PPL‐SOY‐CLEA yielded maximum fatty acid ethyl ester (FAEE) concentration around 12‐fold higher than that achieved using soluble PPL (34 h reaction at 30°C, 300 rpm stirring, soybean oil/ethanol molar ratio of 1:5) with an enzyme load around 2‐fold lower (very likely due to free enzyme inactivation). The operational stability of the PPL‐SOY‐CLEA in the ethanolysis of soybean oil in a vortex flow type reactor showed that FAEE yield was higher than 50% during ten reaction cycles of 24 h. This reactor configuration may be an attractive alternative to the conventional stirred reactors for biotransformations in industrial plants using carrier‐free biocatalysts. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:910–920, 2018</description><subject>Aggregates</subject><subject>Animals</subject><subject>Biocatalysts</subject><subject>biodiesel</subject><subject>Bioreactors</subject><subject>Catalysis</subject><subject>CLEAs</subject><subject>Cross-Linking Reagents</subject><subject>Crosslinking</subject><subject>Deactivation</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Fatty acids</subject><subject>Glutaraldehyde</subject><subject>Immobilization</subject><subject>Inactivation</subject><subject>Industrial engineering</subject><subject>Industrial plants</subject><subject>Leaching</subject><subject>Lipase</subject><subject>Lipase - metabolism</subject><subject>Manufacturing engineering</subject><subject>Oils &amp; fats</subject><subject>Organic chemistry</subject><subject>Pancreas</subject><subject>Pancreas - enzymology</subject><subject>porcine pancreas lipase</subject><subject>Proteins</subject><subject>Reactors</subject><subject>Reagents</subject><subject>Soy products</subject><subject>soy protein</subject><subject>Soybean oil</subject><subject>Soybean Oil - chemistry</subject><subject>Soybean Oil - metabolism</subject><subject>Soybeans</subject><subject>Stability</subject><subject>Swine</subject><subject>Vegetable oils</subject><subject>vortex flow reactor</subject><subject>Yield</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc-KFDEQh4Mo7rh68AUk4EXB2a0k3Un6qIv_YEFZ1nOoTlePGTOdNulB2pOP4DP6JPbsrB4ET0XBx8ev6sfYYwFnAkCet9OYz6RW-g5biVrCWoNSd9nKmlqvTaPsCXtQyhYALGh5n53IRjdKCbNiW_FC_frx84o2IZWRfOiD5zR9xiHFuYTCU89LmlvCgacQuccJ4_ydOt7O3OdUSgzDl2UdU_ZhID7i4DNh4TGMWIjjZpNpgxOVh-xej7HQo9t5yj69eX198W59-eHt-4uXl2uvGtBL9rpu0FppdaW1ER0gVI2ojCQDKNBU3kBfVdDVaNGS0tRSpb1SttNd16tT9uzoHXP6uqcyuV0onmLEgdK-OAkKGqlAmAV9-g-6Tfs8LOmcFEKAkY2QC_X8SN3cm6l3Yw47zLMT4A4FuEMB7lDAwj65Ne7bHXV_yT8fX4DzI_AtRJr_b3Kvrj9e3Sh_A_QDkNI</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Ramos, Margarita D.</creator><creator>Miranda, Letícia P.</creator><creator>Giordano, Raquel L. C.</creator><creator>Fernandez‐Lafuente, Roberto</creator><creator>Kopp, William</creator><creator>Tardioli, Paulo W.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5011-9881</orcidid></search><sort><creationdate>201807</creationdate><title>1,3‐Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates</title><author>Ramos, Margarita D. ; Miranda, Letícia P. ; Giordano, Raquel L. C. ; Fernandez‐Lafuente, Roberto ; Kopp, William ; Tardioli, Paulo W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3906-60559a8828646671d0a0491472e70a1a74c70f440d5a8a8e36ebe46c338d6ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aggregates</topic><topic>Animals</topic><topic>Biocatalysts</topic><topic>biodiesel</topic><topic>Bioreactors</topic><topic>Catalysis</topic><topic>CLEAs</topic><topic>Cross-Linking Reagents</topic><topic>Crosslinking</topic><topic>Deactivation</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Fatty acids</topic><topic>Glutaraldehyde</topic><topic>Immobilization</topic><topic>Inactivation</topic><topic>Industrial engineering</topic><topic>Industrial plants</topic><topic>Leaching</topic><topic>Lipase</topic><topic>Lipase - metabolism</topic><topic>Manufacturing engineering</topic><topic>Oils &amp; fats</topic><topic>Organic chemistry</topic><topic>Pancreas</topic><topic>Pancreas - enzymology</topic><topic>porcine pancreas lipase</topic><topic>Proteins</topic><topic>Reactors</topic><topic>Reagents</topic><topic>Soy products</topic><topic>soy protein</topic><topic>Soybean oil</topic><topic>Soybean Oil - chemistry</topic><topic>Soybean Oil - metabolism</topic><topic>Soybeans</topic><topic>Stability</topic><topic>Swine</topic><topic>Vegetable oils</topic><topic>vortex flow reactor</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Margarita D.</creatorcontrib><creatorcontrib>Miranda, Letícia P.</creatorcontrib><creatorcontrib>Giordano, Raquel L. C.</creatorcontrib><creatorcontrib>Fernandez‐Lafuente, Roberto</creatorcontrib><creatorcontrib>Kopp, William</creatorcontrib><creatorcontrib>Tardioli, Paulo W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Margarita D.</au><au>Miranda, Letícia P.</au><au>Giordano, Raquel L. C.</au><au>Fernandez‐Lafuente, Roberto</au><au>Kopp, William</au><au>Tardioli, Paulo W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1,3‐Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2018-07</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>910</spage><epage>920</epage><pages>910-920</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL‐CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of the immobilized PPL. Standard CLEAs showed a global yield (CLEA’ observed activity/offered total activity) of less than 4%, whereas with the addition of soy protein (PPL:soy protein mass ratio of 1:3) the global yield was approximately fivefold higher. The CLEA of PPL prepared with soy protein as feeder (PPL:soy protein mass ratio of 1:3) and glutaraldehyde as crosslinking reagent (10 μmol of aldehyde groups/mg of total protein) was more active mainly because of the reduced enzyme leaching in the washing step. This CLEA, named PPL‐SOY‐CLEA, had an immobilization yield around 60% and an expressed activity around 40%. In the ethanolysis of soybean oil, the PPL‐SOY‐CLEA yielded maximum fatty acid ethyl ester (FAEE) concentration around 12‐fold higher than that achieved using soluble PPL (34 h reaction at 30°C, 300 rpm stirring, soybean oil/ethanol molar ratio of 1:5) with an enzyme load around 2‐fold lower (very likely due to free enzyme inactivation). The operational stability of the PPL‐SOY‐CLEA in the ethanolysis of soybean oil in a vortex flow type reactor showed that FAEE yield was higher than 50% during ten reaction cycles of 24 h. This reactor configuration may be an attractive alternative to the conventional stirred reactors for biotransformations in industrial plants using carrier‐free biocatalysts. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:910–920, 2018</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29693317</pmid><doi>10.1002/btpr.2636</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5011-9881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2018-07, Vol.34 (4), p.910-920
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_2030923017
source MEDLINE; Wiley Online Library Journals
subjects Aggregates
Animals
Biocatalysts
biodiesel
Bioreactors
Catalysis
CLEAs
Cross-Linking Reagents
Crosslinking
Deactivation
Enzymes
Ethanol
Ethanol - chemistry
Fatty acids
Glutaraldehyde
Immobilization
Inactivation
Industrial engineering
Industrial plants
Leaching
Lipase
Lipase - metabolism
Manufacturing engineering
Oils & fats
Organic chemistry
Pancreas
Pancreas - enzymology
porcine pancreas lipase
Proteins
Reactors
Reagents
Soy products
soy protein
Soybean oil
Soybean Oil - chemistry
Soybean Oil - metabolism
Soybeans
Stability
Swine
Vegetable oils
vortex flow reactor
Yield
title 1,3‐Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1,3%E2%80%90Regiospecific%20ethanolysis%20of%20soybean%20oil%20catalyzed%20by%20crosslinked%20porcine%20pancreas%20lipase%20aggregates&rft.jtitle=Biotechnology%20progress&rft.au=Ramos,%20Margarita%20D.&rft.date=2018-07&rft.volume=34&rft.issue=4&rft.spage=910&rft.epage=920&rft.pages=910-920&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2636&rft_dat=%3Cproquest_cross%3E2030923017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111072912&rft_id=info:pmid/29693317&rfr_iscdi=true