Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples

In biological systems, the pH in intracellular organelles or tissues is strictly regulated, and differences of pH are deeply related to key biological events such as protein degradation, intracellular trafficking, renal failure, and cancer. Ratiometric fluorescence imaging is useful for determinatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-05, Vol.140 (18), p.5925-5933
Hauptverfasser: Takahashi, Shodai, Kagami, Yu, Hanaoka, Kenjiro, Terai, Takuya, Komatsu, Toru, Ueno, Tasuku, Uchiyama, Masanobu, Koyama-Honda, Ikuko, Mizushima, Noboru, Taguchi, Tomohiko, Arai, Hiroyuki, Nagano, Tetsuo, Urano, Yasuteru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5933
container_issue 18
container_start_page 5925
container_title Journal of the American Chemical Society
container_volume 140
creator Takahashi, Shodai
Kagami, Yu
Hanaoka, Kenjiro
Terai, Takuya
Komatsu, Toru
Ueno, Tasuku
Uchiyama, Masanobu
Koyama-Honda, Ikuko
Mizushima, Noboru
Taguchi, Tomohiko
Arai, Hiroyuki
Nagano, Tetsuo
Urano, Yasuteru
description In biological systems, the pH in intracellular organelles or tissues is strictly regulated, and differences of pH are deeply related to key biological events such as protein degradation, intracellular trafficking, renal failure, and cancer. Ratiometric fluorescence imaging is useful for determination of precise pH values, but existing fluorescence probes have substantial limitations, such as inappropriate pK a for imaging in the physiological pH range, inadequate photobleaching resistance, and insufficiently long excitation and emission wavelengths. Here we report a versatile scaffold for ratiometric fluorescence pH probes, based on asymmetric rhodamine. To demonstrate its usefulness for biological applications, we employed it to develop two probes. (1) SiRpH5 has suitable pK a and water solubility for imaging in acidic intracellular compartments; by using transferrin tagged with SiRpH5, we achieved time-lapse imaging of pH in endocytic compartments during protein trafficking for the first time. (2) Me-pEPPR is a near-infrared (NIR) probe; by using dextrin tagged with Me-pEPPR, we were able to image extracellular pH of renal tubules and tumors in situ. These chemical tools should be useful for studying the influence of intra- and extracellular pH on biological processes, as well as for in vivo imaging.
doi_str_mv 10.1021/jacs.8b00277
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2030916003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030916003</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-5fde9aa5d475c9f34fedf78d86eb6d109259bd9ad228e8b54409960ca763888b3</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYzpc9okIpUhFILayRk5whlRMHO6nEf49DCywstu_pd-_OD6FzSqaUMHq9kYWb8pwQlqYHaExjRoKYsuQQjYkXg5Qn4QidOLfxZcQ4PUYjJhLOUxqOkbqFLWjT1tB02Cgs8QpsBW54P1tZdFUhNZ7r3lhwxQDN3qH-FtfGaOdP_AjS9RZwu8CvUve-uWrwstpWzRteybrV4E7RkZLawdn-nqCX-d16tgiWT_cPs5tlICOWdkGsShBSxmWUxoVQYaSgVCkveQJ5UlIiWCzyUsiSMQ48j6OICJGQQqZJyDnPwwm63Pm21nz4TbqsrvzaWssGTO8yRkIiaEJI6NGrHVpY45wFlbW2qqX9zCjJhmSzIdlsn6zHL_bOfV5D-Qv_RPk3eujamN42_qP_e30B8ruBlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030916003</pqid></control><display><type>article</type><title>Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples</title><source>ACS Publications</source><creator>Takahashi, Shodai ; Kagami, Yu ; Hanaoka, Kenjiro ; Terai, Takuya ; Komatsu, Toru ; Ueno, Tasuku ; Uchiyama, Masanobu ; Koyama-Honda, Ikuko ; Mizushima, Noboru ; Taguchi, Tomohiko ; Arai, Hiroyuki ; Nagano, Tetsuo ; Urano, Yasuteru</creator><creatorcontrib>Takahashi, Shodai ; Kagami, Yu ; Hanaoka, Kenjiro ; Terai, Takuya ; Komatsu, Toru ; Ueno, Tasuku ; Uchiyama, Masanobu ; Koyama-Honda, Ikuko ; Mizushima, Noboru ; Taguchi, Tomohiko ; Arai, Hiroyuki ; Nagano, Tetsuo ; Urano, Yasuteru</creatorcontrib><description>In biological systems, the pH in intracellular organelles or tissues is strictly regulated, and differences of pH are deeply related to key biological events such as protein degradation, intracellular trafficking, renal failure, and cancer. Ratiometric fluorescence imaging is useful for determination of precise pH values, but existing fluorescence probes have substantial limitations, such as inappropriate pK a for imaging in the physiological pH range, inadequate photobleaching resistance, and insufficiently long excitation and emission wavelengths. Here we report a versatile scaffold for ratiometric fluorescence pH probes, based on asymmetric rhodamine. To demonstrate its usefulness for biological applications, we employed it to develop two probes. (1) SiRpH5 has suitable pK a and water solubility for imaging in acidic intracellular compartments; by using transferrin tagged with SiRpH5, we achieved time-lapse imaging of pH in endocytic compartments during protein trafficking for the first time. (2) Me-pEPPR is a near-infrared (NIR) probe; by using dextrin tagged with Me-pEPPR, we were able to image extracellular pH of renal tubules and tumors in situ. These chemical tools should be useful for studying the influence of intra- and extracellular pH on biological processes, as well as for in vivo imaging.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b00277</identifier><identifier>PMID: 29688713</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2018-05, Vol.140 (18), p.5925-5933</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-5fde9aa5d475c9f34fedf78d86eb6d109259bd9ad228e8b54409960ca763888b3</citedby><cites>FETCH-LOGICAL-a427t-5fde9aa5d475c9f34fedf78d86eb6d109259bd9ad228e8b54409960ca763888b3</cites><orcidid>0000-0003-0797-4038 ; 0000-0001-6385-5944 ; 0000-0002-3425-3589 ; 0000-0003-0464-6370 ; 0000-0002-9268-6964 ; 0000-0002-1220-6327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b00277$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b00277$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29688713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takahashi, Shodai</creatorcontrib><creatorcontrib>Kagami, Yu</creatorcontrib><creatorcontrib>Hanaoka, Kenjiro</creatorcontrib><creatorcontrib>Terai, Takuya</creatorcontrib><creatorcontrib>Komatsu, Toru</creatorcontrib><creatorcontrib>Ueno, Tasuku</creatorcontrib><creatorcontrib>Uchiyama, Masanobu</creatorcontrib><creatorcontrib>Koyama-Honda, Ikuko</creatorcontrib><creatorcontrib>Mizushima, Noboru</creatorcontrib><creatorcontrib>Taguchi, Tomohiko</creatorcontrib><creatorcontrib>Arai, Hiroyuki</creatorcontrib><creatorcontrib>Nagano, Tetsuo</creatorcontrib><creatorcontrib>Urano, Yasuteru</creatorcontrib><title>Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>In biological systems, the pH in intracellular organelles or tissues is strictly regulated, and differences of pH are deeply related to key biological events such as protein degradation, intracellular trafficking, renal failure, and cancer. Ratiometric fluorescence imaging is useful for determination of precise pH values, but existing fluorescence probes have substantial limitations, such as inappropriate pK a for imaging in the physiological pH range, inadequate photobleaching resistance, and insufficiently long excitation and emission wavelengths. Here we report a versatile scaffold for ratiometric fluorescence pH probes, based on asymmetric rhodamine. To demonstrate its usefulness for biological applications, we employed it to develop two probes. (1) SiRpH5 has suitable pK a and water solubility for imaging in acidic intracellular compartments; by using transferrin tagged with SiRpH5, we achieved time-lapse imaging of pH in endocytic compartments during protein trafficking for the first time. (2) Me-pEPPR is a near-infrared (NIR) probe; by using dextrin tagged with Me-pEPPR, we were able to image extracellular pH of renal tubules and tumors in situ. These chemical tools should be useful for studying the influence of intra- and extracellular pH on biological processes, as well as for in vivo imaging.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYzpc9okIpUhFILayRk5whlRMHO6nEf49DCywstu_pd-_OD6FzSqaUMHq9kYWb8pwQlqYHaExjRoKYsuQQjYkXg5Qn4QidOLfxZcQ4PUYjJhLOUxqOkbqFLWjT1tB02Cgs8QpsBW54P1tZdFUhNZ7r3lhwxQDN3qH-FtfGaOdP_AjS9RZwu8CvUve-uWrwstpWzRteybrV4E7RkZLawdn-nqCX-d16tgiWT_cPs5tlICOWdkGsShBSxmWUxoVQYaSgVCkveQJ5UlIiWCzyUsiSMQ48j6OICJGQQqZJyDnPwwm63Pm21nz4TbqsrvzaWssGTO8yRkIiaEJI6NGrHVpY45wFlbW2qqX9zCjJhmSzIdlsn6zHL_bOfV5D-Qv_RPk3eujamN42_qP_e30B8ruBlg</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Takahashi, Shodai</creator><creator>Kagami, Yu</creator><creator>Hanaoka, Kenjiro</creator><creator>Terai, Takuya</creator><creator>Komatsu, Toru</creator><creator>Ueno, Tasuku</creator><creator>Uchiyama, Masanobu</creator><creator>Koyama-Honda, Ikuko</creator><creator>Mizushima, Noboru</creator><creator>Taguchi, Tomohiko</creator><creator>Arai, Hiroyuki</creator><creator>Nagano, Tetsuo</creator><creator>Urano, Yasuteru</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0797-4038</orcidid><orcidid>https://orcid.org/0000-0001-6385-5944</orcidid><orcidid>https://orcid.org/0000-0002-3425-3589</orcidid><orcidid>https://orcid.org/0000-0003-0464-6370</orcidid><orcidid>https://orcid.org/0000-0002-9268-6964</orcidid><orcidid>https://orcid.org/0000-0002-1220-6327</orcidid></search><sort><creationdate>20180509</creationdate><title>Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples</title><author>Takahashi, Shodai ; Kagami, Yu ; Hanaoka, Kenjiro ; Terai, Takuya ; Komatsu, Toru ; Ueno, Tasuku ; Uchiyama, Masanobu ; Koyama-Honda, Ikuko ; Mizushima, Noboru ; Taguchi, Tomohiko ; Arai, Hiroyuki ; Nagano, Tetsuo ; Urano, Yasuteru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-5fde9aa5d475c9f34fedf78d86eb6d109259bd9ad228e8b54409960ca763888b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Shodai</creatorcontrib><creatorcontrib>Kagami, Yu</creatorcontrib><creatorcontrib>Hanaoka, Kenjiro</creatorcontrib><creatorcontrib>Terai, Takuya</creatorcontrib><creatorcontrib>Komatsu, Toru</creatorcontrib><creatorcontrib>Ueno, Tasuku</creatorcontrib><creatorcontrib>Uchiyama, Masanobu</creatorcontrib><creatorcontrib>Koyama-Honda, Ikuko</creatorcontrib><creatorcontrib>Mizushima, Noboru</creatorcontrib><creatorcontrib>Taguchi, Tomohiko</creatorcontrib><creatorcontrib>Arai, Hiroyuki</creatorcontrib><creatorcontrib>Nagano, Tetsuo</creatorcontrib><creatorcontrib>Urano, Yasuteru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Shodai</au><au>Kagami, Yu</au><au>Hanaoka, Kenjiro</au><au>Terai, Takuya</au><au>Komatsu, Toru</au><au>Ueno, Tasuku</au><au>Uchiyama, Masanobu</au><au>Koyama-Honda, Ikuko</au><au>Mizushima, Noboru</au><au>Taguchi, Tomohiko</au><au>Arai, Hiroyuki</au><au>Nagano, Tetsuo</au><au>Urano, Yasuteru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-05-09</date><risdate>2018</risdate><volume>140</volume><issue>18</issue><spage>5925</spage><epage>5933</epage><pages>5925-5933</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>In biological systems, the pH in intracellular organelles or tissues is strictly regulated, and differences of pH are deeply related to key biological events such as protein degradation, intracellular trafficking, renal failure, and cancer. Ratiometric fluorescence imaging is useful for determination of precise pH values, but existing fluorescence probes have substantial limitations, such as inappropriate pK a for imaging in the physiological pH range, inadequate photobleaching resistance, and insufficiently long excitation and emission wavelengths. Here we report a versatile scaffold for ratiometric fluorescence pH probes, based on asymmetric rhodamine. To demonstrate its usefulness for biological applications, we employed it to develop two probes. (1) SiRpH5 has suitable pK a and water solubility for imaging in acidic intracellular compartments; by using transferrin tagged with SiRpH5, we achieved time-lapse imaging of pH in endocytic compartments during protein trafficking for the first time. (2) Me-pEPPR is a near-infrared (NIR) probe; by using dextrin tagged with Me-pEPPR, we were able to image extracellular pH of renal tubules and tumors in situ. These chemical tools should be useful for studying the influence of intra- and extracellular pH on biological processes, as well as for in vivo imaging.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29688713</pmid><doi>10.1021/jacs.8b00277</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0797-4038</orcidid><orcidid>https://orcid.org/0000-0001-6385-5944</orcidid><orcidid>https://orcid.org/0000-0002-3425-3589</orcidid><orcidid>https://orcid.org/0000-0003-0464-6370</orcidid><orcidid>https://orcid.org/0000-0002-9268-6964</orcidid><orcidid>https://orcid.org/0000-0002-1220-6327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-05, Vol.140 (18), p.5925-5933
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2030916003
source ACS Publications
title Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Series%20of%20Practical%20Fluorescent%20Chemical%20Tools%20To%20Measure%20pH%20Values%20in%20Living%20Samples&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Takahashi,%20Shodai&rft.date=2018-05-09&rft.volume=140&rft.issue=18&rft.spage=5925&rft.epage=5933&rft.pages=5925-5933&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b00277&rft_dat=%3Cproquest_cross%3E2030916003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030916003&rft_id=info:pmid/29688713&rfr_iscdi=true