On the shapes and spins of “rubble pile” asteroids
We examine the shape of a “rubble pile” asteroid as it slowly gains angular momentum by YORP torque, to the point where “landsliding” occurs. We find that it evolves to a “top” shape with constant angle of repose from the equator up to mid-latitude, closely resembling the shapes of several nearly cr...
Gespeichert in:
Veröffentlicht in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 2009-02, Vol.199 (2), p.310-318 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 2 |
container_start_page | 310 |
container_title | Icarus (New York, N.Y. 1962) |
container_volume | 199 |
creator | Harris, Alan W. Fahnestock, Eugene G. Pravec, Petr |
description | We examine the shape of a “rubble pile” asteroid as it slowly gains angular momentum by YORP torque, to the point where “landsliding” occurs. We find that it evolves to a “top” shape with constant angle of repose from the equator up to mid-latitude, closely resembling the shapes of several nearly critically spinning asteroids imaged by radar, most notably (66391) 1999 KW4 [Ostro, S.J., Margot, J.-L., Benner, L.A.M., Giorgini, J.D., Scheeres, D.J., Fahnestock, E.G., Broschart, S.B., Bellerose, J., Nolan, M.C., Magri, C., Pravec, P., Scheirich, P., Rose, R., Jurgens, R.F., De Jong, E.M., Suzuki, S., 2006. Science 314, 1276–1280]. Similar calculations for non-spinning extremely prolate or oblate “rubble piles” show that even loose rubble can sustain shapes far from fluid equilibrium, thus inferences based on fluid equilibrium are generally useless for inferring bulk properties such as density of small bodies. We also investigate the tidal effects of a binary system with a “top shape” primary spinning at near the critical limit for stability. We find that very close to the stability limit, the tide from the secondary can actually levitate loose debris from the surface and re-deposit it, in a process we call “tidal saltation.” In the process, angular momentum is transferred from the primary spin to the satellite orbit, thus maintaining the equilibrium of near-critical spin as YORP continues to add angular momentum to the system. We note that this process is in fact dynamically related to the process of “shepherding” of narrow rings by neighboring satellites. |
doi_str_mv | 10.1016/j.icarus.2008.09.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20297737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103508003424</els_id><sourcerecordid>20297737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c5fdec2732d28526c9427a26c2dd9a01361e162e2f48324d908a4140ba7217313</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwByyygV3C2M7LGyRU8ZIqdQNry7Unqqs0CZ4EiV0_BH6uX0KqVixZ3c2ZOzOHsWsOCQee360Tb00YKBEAZQIqAS5O2ISDgljkqTxlEwCuYg4yO2cXRGsAyEolJyxfNFG_wohWpkOKTOMi6nxDUVtFu-13GJbLGqPO17jb_kSGegytd3TJzipTE14dc8renx7fZi_xfPH8OnuYxzaVso9tVjm0opDCiTITuVWpKMyYwjllgMucI88FiiotpUidgtKkPIWlKQQvJJdTdnvo7UL7MSD1euPJYl2bBtuBtAChikIWI5geQBtaooCV7oLfmPClOei9JL3WB0l6L0mD0qOkcezm2G_ImroKprGe_mbHI0ZLkI3c_YHD8dlPj0GT9dhYdD6g7bVr_f-LfgE5jH6d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20297737</pqid></control><display><type>article</type><title>On the shapes and spins of “rubble pile” asteroids</title><source>Elsevier ScienceDirect Journals</source><creator>Harris, Alan W. ; Fahnestock, Eugene G. ; Pravec, Petr</creator><creatorcontrib>Harris, Alan W. ; Fahnestock, Eugene G. ; Pravec, Petr</creatorcontrib><description>We examine the shape of a “rubble pile” asteroid as it slowly gains angular momentum by YORP torque, to the point where “landsliding” occurs. We find that it evolves to a “top” shape with constant angle of repose from the equator up to mid-latitude, closely resembling the shapes of several nearly critically spinning asteroids imaged by radar, most notably (66391) 1999 KW4 [Ostro, S.J., Margot, J.-L., Benner, L.A.M., Giorgini, J.D., Scheeres, D.J., Fahnestock, E.G., Broschart, S.B., Bellerose, J., Nolan, M.C., Magri, C., Pravec, P., Scheirich, P., Rose, R., Jurgens, R.F., De Jong, E.M., Suzuki, S., 2006. Science 314, 1276–1280]. Similar calculations for non-spinning extremely prolate or oblate “rubble piles” show that even loose rubble can sustain shapes far from fluid equilibrium, thus inferences based on fluid equilibrium are generally useless for inferring bulk properties such as density of small bodies. We also investigate the tidal effects of a binary system with a “top shape” primary spinning at near the critical limit for stability. We find that very close to the stability limit, the tide from the secondary can actually levitate loose debris from the surface and re-deposit it, in a process we call “tidal saltation.” In the process, angular momentum is transferred from the primary spin to the satellite orbit, thus maintaining the equilibrium of near-critical spin as YORP continues to add angular momentum to the system. We note that this process is in fact dynamically related to the process of “shepherding” of narrow rings by neighboring satellites.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2008.09.012</identifier><identifier>CODEN: ICRSA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Asteroids ; Astronomy ; dynamics ; Earth, ocean, space ; Exact sciences and technology ; rotation ; Rotational dynamics ; Solar system ; solid body ; Tides</subject><ispartof>Icarus (New York, N.Y. 1962), 2009-02, Vol.199 (2), p.310-318</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c5fdec2732d28526c9427a26c2dd9a01361e162e2f48324d908a4140ba7217313</citedby><cites>FETCH-LOGICAL-c433t-c5fdec2732d28526c9427a26c2dd9a01361e162e2f48324d908a4140ba7217313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019103508003424$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21789305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Alan W.</creatorcontrib><creatorcontrib>Fahnestock, Eugene G.</creatorcontrib><creatorcontrib>Pravec, Petr</creatorcontrib><title>On the shapes and spins of “rubble pile” asteroids</title><title>Icarus (New York, N.Y. 1962)</title><description>We examine the shape of a “rubble pile” asteroid as it slowly gains angular momentum by YORP torque, to the point where “landsliding” occurs. We find that it evolves to a “top” shape with constant angle of repose from the equator up to mid-latitude, closely resembling the shapes of several nearly critically spinning asteroids imaged by radar, most notably (66391) 1999 KW4 [Ostro, S.J., Margot, J.-L., Benner, L.A.M., Giorgini, J.D., Scheeres, D.J., Fahnestock, E.G., Broschart, S.B., Bellerose, J., Nolan, M.C., Magri, C., Pravec, P., Scheirich, P., Rose, R., Jurgens, R.F., De Jong, E.M., Suzuki, S., 2006. Science 314, 1276–1280]. Similar calculations for non-spinning extremely prolate or oblate “rubble piles” show that even loose rubble can sustain shapes far from fluid equilibrium, thus inferences based on fluid equilibrium are generally useless for inferring bulk properties such as density of small bodies. We also investigate the tidal effects of a binary system with a “top shape” primary spinning at near the critical limit for stability. We find that very close to the stability limit, the tide from the secondary can actually levitate loose debris from the surface and re-deposit it, in a process we call “tidal saltation.” In the process, angular momentum is transferred from the primary spin to the satellite orbit, thus maintaining the equilibrium of near-critical spin as YORP continues to add angular momentum to the system. We note that this process is in fact dynamically related to the process of “shepherding” of narrow rings by neighboring satellites.</description><subject>Asteroids</subject><subject>Astronomy</subject><subject>dynamics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>rotation</subject><subject>Rotational dynamics</subject><subject>Solar system</subject><subject>solid body</subject><subject>Tides</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwByyygV3C2M7LGyRU8ZIqdQNry7Unqqs0CZ4EiV0_BH6uX0KqVixZ3c2ZOzOHsWsOCQee360Tb00YKBEAZQIqAS5O2ISDgljkqTxlEwCuYg4yO2cXRGsAyEolJyxfNFG_wohWpkOKTOMi6nxDUVtFu-13GJbLGqPO17jb_kSGegytd3TJzipTE14dc8renx7fZi_xfPH8OnuYxzaVso9tVjm0opDCiTITuVWpKMyYwjllgMucI88FiiotpUidgtKkPIWlKQQvJJdTdnvo7UL7MSD1euPJYl2bBtuBtAChikIWI5geQBtaooCV7oLfmPClOei9JL3WB0l6L0mD0qOkcezm2G_ImroKprGe_mbHI0ZLkI3c_YHD8dlPj0GT9dhYdD6g7bVr_f-LfgE5jH6d</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Harris, Alan W.</creator><creator>Fahnestock, Eugene G.</creator><creator>Pravec, Petr</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20090201</creationdate><title>On the shapes and spins of “rubble pile” asteroids</title><author>Harris, Alan W. ; Fahnestock, Eugene G. ; Pravec, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c5fdec2732d28526c9427a26c2dd9a01361e162e2f48324d908a4140ba7217313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Asteroids</topic><topic>Astronomy</topic><topic>dynamics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>rotation</topic><topic>Rotational dynamics</topic><topic>Solar system</topic><topic>solid body</topic><topic>Tides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Alan W.</creatorcontrib><creatorcontrib>Fahnestock, Eugene G.</creatorcontrib><creatorcontrib>Pravec, Petr</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Alan W.</au><au>Fahnestock, Eugene G.</au><au>Pravec, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the shapes and spins of “rubble pile” asteroids</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>199</volume><issue>2</issue><spage>310</spage><epage>318</epage><pages>310-318</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><coden>ICRSA5</coden><abstract>We examine the shape of a “rubble pile” asteroid as it slowly gains angular momentum by YORP torque, to the point where “landsliding” occurs. We find that it evolves to a “top” shape with constant angle of repose from the equator up to mid-latitude, closely resembling the shapes of several nearly critically spinning asteroids imaged by radar, most notably (66391) 1999 KW4 [Ostro, S.J., Margot, J.-L., Benner, L.A.M., Giorgini, J.D., Scheeres, D.J., Fahnestock, E.G., Broschart, S.B., Bellerose, J., Nolan, M.C., Magri, C., Pravec, P., Scheirich, P., Rose, R., Jurgens, R.F., De Jong, E.M., Suzuki, S., 2006. Science 314, 1276–1280]. Similar calculations for non-spinning extremely prolate or oblate “rubble piles” show that even loose rubble can sustain shapes far from fluid equilibrium, thus inferences based on fluid equilibrium are generally useless for inferring bulk properties such as density of small bodies. We also investigate the tidal effects of a binary system with a “top shape” primary spinning at near the critical limit for stability. We find that very close to the stability limit, the tide from the secondary can actually levitate loose debris from the surface and re-deposit it, in a process we call “tidal saltation.” In the process, angular momentum is transferred from the primary spin to the satellite orbit, thus maintaining the equilibrium of near-critical spin as YORP continues to add angular momentum to the system. We note that this process is in fact dynamically related to the process of “shepherding” of narrow rings by neighboring satellites.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2008.09.012</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-1035 |
ispartof | Icarus (New York, N.Y. 1962), 2009-02, Vol.199 (2), p.310-318 |
issn | 0019-1035 1090-2643 |
language | eng |
recordid | cdi_proquest_miscellaneous_20297737 |
source | Elsevier ScienceDirect Journals |
subjects | Asteroids Astronomy dynamics Earth, ocean, space Exact sciences and technology rotation Rotational dynamics Solar system solid body Tides |
title | On the shapes and spins of “rubble pile” asteroids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20shapes%20and%20spins%20of%20%E2%80%9Crubble%20pile%E2%80%9D%20asteroids&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Harris,%20Alan%20W.&rft.date=2009-02-01&rft.volume=199&rft.issue=2&rft.spage=310&rft.epage=318&rft.pages=310-318&rft.issn=0019-1035&rft.eissn=1090-2643&rft.coden=ICRSA5&rft_id=info:doi/10.1016/j.icarus.2008.09.012&rft_dat=%3Cproquest_cross%3E20297737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20297737&rft_id=info:pmid/&rft_els_id=S0019103508003424&rfr_iscdi=true |