Effects of consumers and enrichment on abundance and diversity of benthic algae in a rocky intertidal community

Human alteration of nutrient cycling and the densities of important consumers have intensified the importance of understanding how nutrients and consumers influence the structure of ecological systems. We examined the effects of both grazing and nutrient enrichment on algal abundance and diversity i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental marine biology and ecology 2009-02, Vol.369 (2), p.155-164
Hauptverfasser: Guerry, Anne D., Menge, Bruce A., Dunmore, Robyn A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human alteration of nutrient cycling and the densities of important consumers have intensified the importance of understanding how nutrients and consumers influence the structure of ecological systems. We examined the effects of both grazing and nutrient enrichment on algal abundance and diversity in a high-intertidal limpet-macroalgal community on the South Island of New Zealand, a relatively nutrient-poor environment. We used a fully factorial design with three levels each of grazing (manipulations of limpet and snail densities) and nutrients (nutrient-diffusers attached to the rock). Top-down control by grazers appears to be the driving organizing mechanism for algal communities in this system, with strong negative effects of grazing on algal diversity and abundance across all levels of nutrient enrichment. However, in contrast to the conclusions drawn from the analysis of the whole algal community, there was an interactive effect of grazing and enrichment on foliose algae, an important component of the algal system. When herbivory was reduced to very low levels, enrichment generated increases in the abundance and biomass of foliose algae. As expected, top-down control was the primary determinant of algal community structure in this system, controlling abundance and diversity of macrophytes on the upper shore. Contrary to expectations, however, increased nutrients had no community-wide effects, although foliose algal abundance increases were greatest with high nutrients and reduced grazing. It seems likely that most of the corticated algal species have limited capacity to respond to nutrient pulses in this nutrient-poor environment.
ISSN:0022-0981
1879-1697
DOI:10.1016/j.jembe.2008.11.011