Skill assessment in ocean biological data assimilation

There is growing recognition that rigorous skill assessment is required to understand the ability of ocean biological models to represent ocean processes and distributions. Statistical analysis of model results with observations represents the most quantitative form of skill assessment, and this pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine systems 2009-02, Vol.76 (1), p.16-33
Hauptverfasser: Gregg, Watson W., Friedrichs, Marjorie A.M., Robinson, Allan R., Rose, Kenneth A., Schlitzer, Reiner, Thompson, Keith R., Doney, Scott C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 16
container_title Journal of marine systems
container_volume 76
creator Gregg, Watson W.
Friedrichs, Marjorie A.M.
Robinson, Allan R.
Rose, Kenneth A.
Schlitzer, Reiner
Thompson, Keith R.
Doney, Scott C.
description There is growing recognition that rigorous skill assessment is required to understand the ability of ocean biological models to represent ocean processes and distributions. Statistical analysis of model results with observations represents the most quantitative form of skill assessment, and this principle serves as well for data assimilation models. However, skill assessment for data assimilation requires special consideration. This is because there are three sets of information in data assimilation: the free-run model, data, and the assimilation model, which uses information from both the free-run model and the data. Intercomparison of results among the three sets of information is important and useful for assessment, but is not conclusive since the three information sets are intertwined. An independent data set is necessary for an objective determination. Other useful measures of ocean biological data assimilation assessment include responses of unassimilated variables to the data assimilation, performance outside the prescribed region/time of interest, forecasting, and trend analysis. Examples of each approach from the literature are provided. A comprehensive list of ocean biological data assimilation and their applications of skill assessment, in both ecosystem/biogeochemical and fisheries efforts, is summarized.
doi_str_mv 10.1016/j.jmarsys.2008.05.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20288496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924796308001115</els_id><sourcerecordid>20288496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-3edecfe95634ffd552171920bf48401db74a1b4b1d34e1e8f5dcee35791cccf53</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKErd603TdLHSmTwBQMu1HVIkxtJzTRjb0eYf2-Hce_qbL5z4HyMXXMoOPDqti_6jRlpT0UJ0BSgCoDqhC14U7c5V7U4ZQtoS5nXbSXO2QVRDzPBG7Vg1dtXiDEzREi0wWHKwpAli2bIupBi-gzWxMyZyRyYsAnRTCENl-zMm0h49ZdL9vH48L56ztevTy-r-3VuhYQpF-jQemxVJaT3TqmS17wtofOykcBdV0vDO9lxJyRybLxyFlGouuXWWq_Ekt0cd7dj-t4hTXoTyGKMZsC0I11C2TRyvrVk6gjaMRGN6PV2DLOVveagD5Z0r_8s6YMlDUrPDube3bGH84ufgKMmG3Cw6MKIdtIuhX8WfgGPWXRH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20288496</pqid></control><display><type>article</type><title>Skill assessment in ocean biological data assimilation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gregg, Watson W. ; Friedrichs, Marjorie A.M. ; Robinson, Allan R. ; Rose, Kenneth A. ; Schlitzer, Reiner ; Thompson, Keith R. ; Doney, Scott C.</creator><creatorcontrib>Gregg, Watson W. ; Friedrichs, Marjorie A.M. ; Robinson, Allan R. ; Rose, Kenneth A. ; Schlitzer, Reiner ; Thompson, Keith R. ; Doney, Scott C.</creatorcontrib><description>There is growing recognition that rigorous skill assessment is required to understand the ability of ocean biological models to represent ocean processes and distributions. Statistical analysis of model results with observations represents the most quantitative form of skill assessment, and this principle serves as well for data assimilation models. However, skill assessment for data assimilation requires special consideration. This is because there are three sets of information in data assimilation: the free-run model, data, and the assimilation model, which uses information from both the free-run model and the data. Intercomparison of results among the three sets of information is important and useful for assessment, but is not conclusive since the three information sets are intertwined. An independent data set is necessary for an objective determination. Other useful measures of ocean biological data assimilation assessment include responses of unassimilated variables to the data assimilation, performance outside the prescribed region/time of interest, forecasting, and trend analysis. Examples of each approach from the literature are provided. A comprehensive list of ocean biological data assimilation and their applications of skill assessment, in both ecosystem/biogeochemical and fisheries efforts, is summarized.</description><identifier>ISSN: 0924-7963</identifier><identifier>EISSN: 1879-1573</identifier><identifier>DOI: 10.1016/j.jmarsys.2008.05.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Data assimilation ; Fisheries data assimilation ; Fisheries models ; Marine ; Ocean biogeochemistry models ; Ocean biology models ; Skill assessment</subject><ispartof>Journal of marine systems, 2009-02, Vol.76 (1), p.16-33</ispartof><rights>2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-3edecfe95634ffd552171920bf48401db74a1b4b1d34e1e8f5dcee35791cccf53</citedby><cites>FETCH-LOGICAL-c340t-3edecfe95634ffd552171920bf48401db74a1b4b1d34e1e8f5dcee35791cccf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmarsys.2008.05.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Gregg, Watson W.</creatorcontrib><creatorcontrib>Friedrichs, Marjorie A.M.</creatorcontrib><creatorcontrib>Robinson, Allan R.</creatorcontrib><creatorcontrib>Rose, Kenneth A.</creatorcontrib><creatorcontrib>Schlitzer, Reiner</creatorcontrib><creatorcontrib>Thompson, Keith R.</creatorcontrib><creatorcontrib>Doney, Scott C.</creatorcontrib><title>Skill assessment in ocean biological data assimilation</title><title>Journal of marine systems</title><description>There is growing recognition that rigorous skill assessment is required to understand the ability of ocean biological models to represent ocean processes and distributions. Statistical analysis of model results with observations represents the most quantitative form of skill assessment, and this principle serves as well for data assimilation models. However, skill assessment for data assimilation requires special consideration. This is because there are three sets of information in data assimilation: the free-run model, data, and the assimilation model, which uses information from both the free-run model and the data. Intercomparison of results among the three sets of information is important and useful for assessment, but is not conclusive since the three information sets are intertwined. An independent data set is necessary for an objective determination. Other useful measures of ocean biological data assimilation assessment include responses of unassimilated variables to the data assimilation, performance outside the prescribed region/time of interest, forecasting, and trend analysis. Examples of each approach from the literature are provided. A comprehensive list of ocean biological data assimilation and their applications of skill assessment, in both ecosystem/biogeochemical and fisheries efforts, is summarized.</description><subject>Data assimilation</subject><subject>Fisheries data assimilation</subject><subject>Fisheries models</subject><subject>Marine</subject><subject>Ocean biogeochemistry models</subject><subject>Ocean biology models</subject><subject>Skill assessment</subject><issn>0924-7963</issn><issn>1879-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKErd603TdLHSmTwBQMu1HVIkxtJzTRjb0eYf2-Hce_qbL5z4HyMXXMoOPDqti_6jRlpT0UJ0BSgCoDqhC14U7c5V7U4ZQtoS5nXbSXO2QVRDzPBG7Vg1dtXiDEzREi0wWHKwpAli2bIupBi-gzWxMyZyRyYsAnRTCENl-zMm0h49ZdL9vH48L56ztevTy-r-3VuhYQpF-jQemxVJaT3TqmS17wtofOykcBdV0vDO9lxJyRybLxyFlGouuXWWq_Ekt0cd7dj-t4hTXoTyGKMZsC0I11C2TRyvrVk6gjaMRGN6PV2DLOVveagD5Z0r_8s6YMlDUrPDube3bGH84ufgKMmG3Cw6MKIdtIuhX8WfgGPWXRH</recordid><startdate>20090220</startdate><enddate>20090220</enddate><creator>Gregg, Watson W.</creator><creator>Friedrichs, Marjorie A.M.</creator><creator>Robinson, Allan R.</creator><creator>Rose, Kenneth A.</creator><creator>Schlitzer, Reiner</creator><creator>Thompson, Keith R.</creator><creator>Doney, Scott C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20090220</creationdate><title>Skill assessment in ocean biological data assimilation</title><author>Gregg, Watson W. ; Friedrichs, Marjorie A.M. ; Robinson, Allan R. ; Rose, Kenneth A. ; Schlitzer, Reiner ; Thompson, Keith R. ; Doney, Scott C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-3edecfe95634ffd552171920bf48401db74a1b4b1d34e1e8f5dcee35791cccf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data assimilation</topic><topic>Fisheries data assimilation</topic><topic>Fisheries models</topic><topic>Marine</topic><topic>Ocean biogeochemistry models</topic><topic>Ocean biology models</topic><topic>Skill assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gregg, Watson W.</creatorcontrib><creatorcontrib>Friedrichs, Marjorie A.M.</creatorcontrib><creatorcontrib>Robinson, Allan R.</creatorcontrib><creatorcontrib>Rose, Kenneth A.</creatorcontrib><creatorcontrib>Schlitzer, Reiner</creatorcontrib><creatorcontrib>Thompson, Keith R.</creatorcontrib><creatorcontrib>Doney, Scott C.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of marine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gregg, Watson W.</au><au>Friedrichs, Marjorie A.M.</au><au>Robinson, Allan R.</au><au>Rose, Kenneth A.</au><au>Schlitzer, Reiner</au><au>Thompson, Keith R.</au><au>Doney, Scott C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skill assessment in ocean biological data assimilation</atitle><jtitle>Journal of marine systems</jtitle><date>2009-02-20</date><risdate>2009</risdate><volume>76</volume><issue>1</issue><spage>16</spage><epage>33</epage><pages>16-33</pages><issn>0924-7963</issn><eissn>1879-1573</eissn><abstract>There is growing recognition that rigorous skill assessment is required to understand the ability of ocean biological models to represent ocean processes and distributions. Statistical analysis of model results with observations represents the most quantitative form of skill assessment, and this principle serves as well for data assimilation models. However, skill assessment for data assimilation requires special consideration. This is because there are three sets of information in data assimilation: the free-run model, data, and the assimilation model, which uses information from both the free-run model and the data. Intercomparison of results among the three sets of information is important and useful for assessment, but is not conclusive since the three information sets are intertwined. An independent data set is necessary for an objective determination. Other useful measures of ocean biological data assimilation assessment include responses of unassimilated variables to the data assimilation, performance outside the prescribed region/time of interest, forecasting, and trend analysis. Examples of each approach from the literature are provided. A comprehensive list of ocean biological data assimilation and their applications of skill assessment, in both ecosystem/biogeochemical and fisheries efforts, is summarized.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmarsys.2008.05.006</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-7963
ispartof Journal of marine systems, 2009-02, Vol.76 (1), p.16-33
issn 0924-7963
1879-1573
language eng
recordid cdi_proquest_miscellaneous_20288496
source ScienceDirect Journals (5 years ago - present)
subjects Data assimilation
Fisheries data assimilation
Fisheries models
Marine
Ocean biogeochemistry models
Ocean biology models
Skill assessment
title Skill assessment in ocean biological data assimilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skill%20assessment%20in%20ocean%20biological%20data%20assimilation&rft.jtitle=Journal%20of%20marine%20systems&rft.au=Gregg,%20Watson%20W.&rft.date=2009-02-20&rft.volume=76&rft.issue=1&rft.spage=16&rft.epage=33&rft.pages=16-33&rft.issn=0924-7963&rft.eissn=1879-1573&rft_id=info:doi/10.1016/j.jmarsys.2008.05.006&rft_dat=%3Cproquest_cross%3E20288496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20288496&rft_id=info:pmid/&rft_els_id=S0924796308001115&rfr_iscdi=true