An investigation of internal mixing in a seasonally stratified shelf sea

The shelf sea seasonal thermocline is a critical interface within the marine environment, separating the euphotic zone from nutrient‐rich deep water. Fluxes across the thermocline therefore represent a key biogeochemical pathway. In this paper we quantify the rate of mixing across the seasonal therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. C. Oceans 2008-12, Vol.113 (C12), p.n/a
Hauptverfasser: Palmer, Matthew R., Rippeth, Tom P., Simpson, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue C12
container_start_page
container_title Journal of Geophysical Research. C. Oceans
container_volume 113
creator Palmer, Matthew R.
Rippeth, Tom P.
Simpson, John H.
description The shelf sea seasonal thermocline is a critical interface within the marine environment, separating the euphotic zone from nutrient‐rich deep water. Fluxes across the thermocline therefore represent a key biogeochemical pathway. In this paper we quantify the rate of mixing across the seasonal thermocline for a location in the Celtic Sea and investigate the processes responsible for driving thermocline fluxes. Profiles of the rate of dissipation of turbulent kinetic energy (ɛ) show enhanced dissipation within the thermocline region (∼6 × 10−5 W m−3). The diffusivity implied by these measurements is ∼0.5 cm2 s−1, similar to previous shelf sea studies, and is sufficient to explain the observed warming of the deep water, suggesting that vertical mixing is the dominant control on water column structure. Two potential sources of mixing energy are identified, the internal tide and near‐inertial waves. The mechanism of energy transfer from the candidate mixing mechanisms to turbulence is not clear. Thermocline dissipation rates were found to have no Richardson number dependence, but scaled positively with N2 and S2, in agreement with a previous turbulence parameterization. Application of this model to our data does a good job of capturing the mean characteristics of the observed heating flux across the thermocline, although none of the short‐term fluctuations in mixing were reproduced.
doi_str_mv 10.1029/2007JC004531
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20279868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919957224</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5383-6c853c7646db03c86d29fed0f27576c6be392cc0f1a915ae5d1fa37b7afcf13b3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouOje_AG9KB6sTpImaY9LcVdFFGRF8BLSNNFot12Trrr_3iyVxZOnYWa-93gzCB1hOMdAigsCIG5KgIxRvINGBDOeEgJkF40AZ3kKhIh9NA7hDWBD8QzwCF1N2sS1nyb07kX1rmuTzsZBb3yrmmThvl37EvtEJcGo0MVhs05C7yNrnamT8Goau9kdoj2rmmDGv_UAPU4v5-VVens_uy4nt6liNKcp1zmjWvCM1xVQnfOaFNbUYIlggmteGVoQrcFiVWCmDKuxVVRUQlltMa3oAToZfJe--1jF3HLhgjZNo1rTrYKMF4si53kET_8FcYGLgglCsoieDaj2XQjeWLn0bqH8WmKQm-fKv8-N-PGvswpaNdarVruw1RAMMQEVkaMD9-Uas_7XU97MHkoMeU6jKh1ULvTme6tS_l1yQQWTT3czOSfZM6YPczmlP1YIlh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919957224</pqid></control><display><type>article</type><title>An investigation of internal mixing in a seasonally stratified shelf sea</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Palmer, Matthew R. ; Rippeth, Tom P. ; Simpson, John H.</creator><creatorcontrib>Palmer, Matthew R. ; Rippeth, Tom P. ; Simpson, John H.</creatorcontrib><description>The shelf sea seasonal thermocline is a critical interface within the marine environment, separating the euphotic zone from nutrient‐rich deep water. Fluxes across the thermocline therefore represent a key biogeochemical pathway. In this paper we quantify the rate of mixing across the seasonal thermocline for a location in the Celtic Sea and investigate the processes responsible for driving thermocline fluxes. Profiles of the rate of dissipation of turbulent kinetic energy (ɛ) show enhanced dissipation within the thermocline region (∼6 × 10−5 W m−3). The diffusivity implied by these measurements is ∼0.5 cm2 s−1, similar to previous shelf sea studies, and is sufficient to explain the observed warming of the deep water, suggesting that vertical mixing is the dominant control on water column structure. Two potential sources of mixing energy are identified, the internal tide and near‐inertial waves. The mechanism of energy transfer from the candidate mixing mechanisms to turbulence is not clear. Thermocline dissipation rates were found to have no Richardson number dependence, but scaled positively with N2 and S2, in agreement with a previous turbulence parameterization. Application of this model to our data does a good job of capturing the mean characteristics of the observed heating flux across the thermocline, although none of the short‐term fluctuations in mixing were reproduced.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2007JC004531</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Marine ; shelf sea processes ; thermocline mixing ; turbulence</subject><ispartof>Journal of Geophysical Research. C. Oceans, 2008-12, Vol.113 (C12), p.n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5383-6c853c7646db03c86d29fed0f27576c6be392cc0f1a915ae5d1fa37b7afcf13b3</citedby><cites>FETCH-LOGICAL-a5383-6c853c7646db03c86d29fed0f27576c6be392cc0f1a915ae5d1fa37b7afcf13b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007JC004531$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007JC004531$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21079837$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Palmer, Matthew R.</creatorcontrib><creatorcontrib>Rippeth, Tom P.</creatorcontrib><creatorcontrib>Simpson, John H.</creatorcontrib><title>An investigation of internal mixing in a seasonally stratified shelf sea</title><title>Journal of Geophysical Research. C. Oceans</title><addtitle>J. Geophys. Res</addtitle><description>The shelf sea seasonal thermocline is a critical interface within the marine environment, separating the euphotic zone from nutrient‐rich deep water. Fluxes across the thermocline therefore represent a key biogeochemical pathway. In this paper we quantify the rate of mixing across the seasonal thermocline for a location in the Celtic Sea and investigate the processes responsible for driving thermocline fluxes. Profiles of the rate of dissipation of turbulent kinetic energy (ɛ) show enhanced dissipation within the thermocline region (∼6 × 10−5 W m−3). The diffusivity implied by these measurements is ∼0.5 cm2 s−1, similar to previous shelf sea studies, and is sufficient to explain the observed warming of the deep water, suggesting that vertical mixing is the dominant control on water column structure. Two potential sources of mixing energy are identified, the internal tide and near‐inertial waves. The mechanism of energy transfer from the candidate mixing mechanisms to turbulence is not clear. Thermocline dissipation rates were found to have no Richardson number dependence, but scaled positively with N2 and S2, in agreement with a previous turbulence parameterization. Application of this model to our data does a good job of capturing the mean characteristics of the observed heating flux across the thermocline, although none of the short‐term fluctuations in mixing were reproduced.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Marine</subject><subject>shelf sea processes</subject><subject>thermocline mixing</subject><subject>turbulence</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouOje_AG9KB6sTpImaY9LcVdFFGRF8BLSNNFot12Trrr_3iyVxZOnYWa-93gzCB1hOMdAigsCIG5KgIxRvINGBDOeEgJkF40AZ3kKhIh9NA7hDWBD8QzwCF1N2sS1nyb07kX1rmuTzsZBb3yrmmThvl37EvtEJcGo0MVhs05C7yNrnamT8Goau9kdoj2rmmDGv_UAPU4v5-VVens_uy4nt6liNKcp1zmjWvCM1xVQnfOaFNbUYIlggmteGVoQrcFiVWCmDKuxVVRUQlltMa3oAToZfJe--1jF3HLhgjZNo1rTrYKMF4si53kET_8FcYGLgglCsoieDaj2XQjeWLn0bqH8WmKQm-fKv8-N-PGvswpaNdarVruw1RAMMQEVkaMD9-Uas_7XU97MHkoMeU6jKh1ULvTme6tS_l1yQQWTT3czOSfZM6YPczmlP1YIlh0</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Palmer, Matthew R.</creator><creator>Rippeth, Tom P.</creator><creator>Simpson, John H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>200812</creationdate><title>An investigation of internal mixing in a seasonally stratified shelf sea</title><author>Palmer, Matthew R. ; Rippeth, Tom P. ; Simpson, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5383-6c853c7646db03c86d29fed0f27576c6be392cc0f1a915ae5d1fa37b7afcf13b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Marine</topic><topic>shelf sea processes</topic><topic>thermocline mixing</topic><topic>turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palmer, Matthew R.</creatorcontrib><creatorcontrib>Rippeth, Tom P.</creatorcontrib><creatorcontrib>Simpson, John H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of Geophysical Research. C. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palmer, Matthew R.</au><au>Rippeth, Tom P.</au><au>Simpson, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation of internal mixing in a seasonally stratified shelf sea</atitle><jtitle>Journal of Geophysical Research. C. Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2008-12</date><risdate>2008</risdate><volume>113</volume><issue>C12</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>The shelf sea seasonal thermocline is a critical interface within the marine environment, separating the euphotic zone from nutrient‐rich deep water. Fluxes across the thermocline therefore represent a key biogeochemical pathway. In this paper we quantify the rate of mixing across the seasonal thermocline for a location in the Celtic Sea and investigate the processes responsible for driving thermocline fluxes. Profiles of the rate of dissipation of turbulent kinetic energy (ɛ) show enhanced dissipation within the thermocline region (∼6 × 10−5 W m−3). The diffusivity implied by these measurements is ∼0.5 cm2 s−1, similar to previous shelf sea studies, and is sufficient to explain the observed warming of the deep water, suggesting that vertical mixing is the dominant control on water column structure. Two potential sources of mixing energy are identified, the internal tide and near‐inertial waves. The mechanism of energy transfer from the candidate mixing mechanisms to turbulence is not clear. Thermocline dissipation rates were found to have no Richardson number dependence, but scaled positively with N2 and S2, in agreement with a previous turbulence parameterization. Application of this model to our data does a good job of capturing the mean characteristics of the observed heating flux across the thermocline, although none of the short‐term fluctuations in mixing were reproduced.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007JC004531</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. C. Oceans, 2008-12, Vol.113 (C12), p.n/a
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_20279868
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Marine
shelf sea processes
thermocline mixing
turbulence
title An investigation of internal mixing in a seasonally stratified shelf sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20of%20internal%20mixing%20in%20a%20seasonally%20stratified%20shelf%20sea&rft.jtitle=Journal%20of%20Geophysical%20Research.%20C.%20Oceans&rft.au=Palmer,%20Matthew%20R.&rft.date=2008-12&rft.volume=113&rft.issue=C12&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2007JC004531&rft_dat=%3Cproquest_cross%3E1919957224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919957224&rft_id=info:pmid/&rfr_iscdi=true