Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells
Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by inc...
Gespeichert in:
Veröffentlicht in: | Science China. Life sciences 2018-04, Vol.61 (4), p.448-456 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 4 |
container_start_page | 448 |
container_title | Science China. Life sciences |
container_volume | 61 |
creator | Cao, Zheng Wang, Dan Li, Yongsan Xie, Wensheng Wang, Xing Tao, Lei Wei, Yen Wang, Xiumei Zhao, Lingyun |
description | Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe
3
O
4
nanoparticles into chitosan/polyethylene glycol (PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field (AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells (MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications. |
doi_str_mv | 10.1007/s11427-017-9287-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2027068496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027068496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-161a33225d9d672b71c527177b8392f4cbd098bbc4ed014cd65920d3e62dfa473</originalsourceid><addsrcrecordid>eNp1kctqHDEQRUVIsI3jD_AmCLzJphM9evRYBuM8wJCNvRZqqXpGpluaSOrF_IC_O-q0k0Ag2kiFTt1b1EXompIPlBD5sVDaM9kRKjvNlOzUK3RBldAdVUq_bm8h-05ysjtHV6U8kXY4J0zKM3TOtBBCK32Bnu_GEVzFacTRxnQAW3GpYV4mW0OKeAYfbAWPhxOe7T5CDe4X6dJ8TCVUwIeTz2kPE254PQBOpUKrYwN9aOoZYg2bWnOZoUB0h9Nsp2YEM3YwTeUtejPaqcDVy32JHj_fPdx-7e6_f_l2--m-cz1XtaOCWs4Z23nthWSDpG7HJJVyUFyzsXeDJ1oNg-vBE9o7L3aaEc9BMD_aXvJL9H7TPeb0Y4FSzRzKOoGNkJZiWFsQEarXoqE3_6BPacmxTbdSghHKhWoU3SiXUykZRnPMYbb5ZCgxa05my8m0nMyak1l73r0oL0Pb75-O36k0gG1AaV9xD_mv9f9VfwJvLZ-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026201368</pqid></control><display><type>article</type><title>Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Cao, Zheng ; Wang, Dan ; Li, Yongsan ; Xie, Wensheng ; Wang, Xing ; Tao, Lei ; Wei, Yen ; Wang, Xiumei ; Zhao, Lingyun</creator><creatorcontrib>Cao, Zheng ; Wang, Dan ; Li, Yongsan ; Xie, Wensheng ; Wang, Xing ; Tao, Lei ; Wei, Yen ; Wang, Xiumei ; Zhao, Lingyun</creatorcontrib><description>Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe
3
O
4
nanoparticles into chitosan/polyethylene glycol (PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field (AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells (MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications.</description><identifier>ISSN: 1674-7305</identifier><identifier>EISSN: 1869-1889</identifier><identifier>DOI: 10.1007/s11427-017-9287-8</identifier><identifier>PMID: 29666989</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Biocompatibility ; Biomedical and Life Sciences ; Bone growth ; Bone healing ; Chitosan ; High temperature ; Hydrogels ; Hyperthermia ; Iron oxides ; Life Sciences ; Mesenchymal stem cells ; Mesenchyme ; Nanocomposites ; Nanoparticles ; Polyethylene glycol ; Regeneration ; Research Paper ; Stem cells ; Tissue engineering</subject><ispartof>Science China. Life sciences, 2018-04, Vol.61 (4), p.448-456</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Science China Life Sciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-161a33225d9d672b71c527177b8392f4cbd098bbc4ed014cd65920d3e62dfa473</citedby><cites>FETCH-LOGICAL-c438t-161a33225d9d672b71c527177b8392f4cbd098bbc4ed014cd65920d3e62dfa473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11427-017-9287-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11427-017-9287-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29666989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Zheng</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Li, Yongsan</creatorcontrib><creatorcontrib>Xie, Wensheng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>Wei, Yen</creatorcontrib><creatorcontrib>Wang, Xiumei</creatorcontrib><creatorcontrib>Zhao, Lingyun</creatorcontrib><title>Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells</title><title>Science China. Life sciences</title><addtitle>Sci. China Life Sci</addtitle><addtitle>Sci China Life Sci</addtitle><description>Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe
3
O
4
nanoparticles into chitosan/polyethylene glycol (PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field (AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells (MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications.</description><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Chitosan</subject><subject>High temperature</subject><subject>Hydrogels</subject><subject>Hyperthermia</subject><subject>Iron oxides</subject><subject>Life Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchyme</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polyethylene glycol</subject><subject>Regeneration</subject><subject>Research Paper</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><issn>1674-7305</issn><issn>1869-1889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctqHDEQRUVIsI3jD_AmCLzJphM9evRYBuM8wJCNvRZqqXpGpluaSOrF_IC_O-q0k0Ag2kiFTt1b1EXompIPlBD5sVDaM9kRKjvNlOzUK3RBldAdVUq_bm8h-05ysjtHV6U8kXY4J0zKM3TOtBBCK32Bnu_GEVzFacTRxnQAW3GpYV4mW0OKeAYfbAWPhxOe7T5CDe4X6dJ8TCVUwIeTz2kPE254PQBOpUKrYwN9aOoZYg2bWnOZoUB0h9Nsp2YEM3YwTeUtejPaqcDVy32JHj_fPdx-7e6_f_l2--m-cz1XtaOCWs4Z23nthWSDpG7HJJVyUFyzsXeDJ1oNg-vBE9o7L3aaEc9BMD_aXvJL9H7TPeb0Y4FSzRzKOoGNkJZiWFsQEarXoqE3_6BPacmxTbdSghHKhWoU3SiXUykZRnPMYbb5ZCgxa05my8m0nMyak1l73r0oL0Pb75-O36k0gG1AaV9xD_mv9f9VfwJvLZ-C</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Cao, Zheng</creator><creator>Wang, Dan</creator><creator>Li, Yongsan</creator><creator>Xie, Wensheng</creator><creator>Wang, Xing</creator><creator>Tao, Lei</creator><creator>Wei, Yen</creator><creator>Wang, Xiumei</creator><creator>Zhao, Lingyun</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20180401</creationdate><title>Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells</title><author>Cao, Zheng ; Wang, Dan ; Li, Yongsan ; Xie, Wensheng ; Wang, Xing ; Tao, Lei ; Wei, Yen ; Wang, Xiumei ; Zhao, Lingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-161a33225d9d672b71c527177b8392f4cbd098bbc4ed014cd65920d3e62dfa473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Chitosan</topic><topic>High temperature</topic><topic>Hydrogels</topic><topic>Hyperthermia</topic><topic>Iron oxides</topic><topic>Life Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchyme</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polyethylene glycol</topic><topic>Regeneration</topic><topic>Research Paper</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zheng</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Li, Yongsan</creatorcontrib><creatorcontrib>Xie, Wensheng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>Wei, Yen</creatorcontrib><creatorcontrib>Wang, Xiumei</creatorcontrib><creatorcontrib>Zhao, Lingyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Science China. Life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Zheng</au><au>Wang, Dan</au><au>Li, Yongsan</au><au>Xie, Wensheng</au><au>Wang, Xing</au><au>Tao, Lei</au><au>Wei, Yen</au><au>Wang, Xiumei</au><au>Zhao, Lingyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells</atitle><jtitle>Science China. Life sciences</jtitle><stitle>Sci. China Life Sci</stitle><addtitle>Sci China Life Sci</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>61</volume><issue>4</issue><spage>448</spage><epage>456</epage><pages>448-456</pages><issn>1674-7305</issn><eissn>1869-1889</eissn><abstract>Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe
3
O
4
nanoparticles into chitosan/polyethylene glycol (PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field (AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells (MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications.</abstract><cop>Beijing</cop><pub>Science China Press</pub><pmid>29666989</pmid><doi>10.1007/s11427-017-9287-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7305 |
ispartof | Science China. Life sciences, 2018-04, Vol.61 (4), p.448-456 |
issn | 1674-7305 1869-1889 |
language | eng |
recordid | cdi_proquest_miscellaneous_2027068496 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Biocompatibility Biomedical and Life Sciences Bone growth Bone healing Chitosan High temperature Hydrogels Hyperthermia Iron oxides Life Sciences Mesenchymal stem cells Mesenchyme Nanocomposites Nanoparticles Polyethylene glycol Regeneration Research Paper Stem cells Tissue engineering |
title | Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20nanoheat%20stimulation%20mediated%20by%20magnetic%20nanocomposite%20hydrogel%20on%20the%20osteogenic%20differentiation%20of%20mesenchymal%20stem%20cells&rft.jtitle=Science%20China.%20Life%20sciences&rft.au=Cao,%20Zheng&rft.date=2018-04-01&rft.volume=61&rft.issue=4&rft.spage=448&rft.epage=456&rft.pages=448-456&rft.issn=1674-7305&rft.eissn=1869-1889&rft_id=info:doi/10.1007/s11427-017-9287-8&rft_dat=%3Cproquest_cross%3E2027068496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2026201368&rft_id=info:pmid/29666989&rfr_iscdi=true |