Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells

Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Life sciences 2018-04, Vol.61 (4), p.448-456
Hauptverfasser: Cao, Zheng, Wang, Dan, Li, Yongsan, Xie, Wensheng, Wang, Xing, Tao, Lei, Wei, Yen, Wang, Xiumei, Zhao, Lingyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 4
container_start_page 448
container_title Science China. Life sciences
container_volume 61
creator Cao, Zheng
Wang, Dan
Li, Yongsan
Xie, Wensheng
Wang, Xing
Tao, Lei
Wei, Yen
Wang, Xiumei
Zhao, Lingyun
description Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe 3 O 4 nanoparticles into chitosan/polyethylene glycol (PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field (AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells (MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications.
doi_str_mv 10.1007/s11427-017-9287-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2027068496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027068496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-161a33225d9d672b71c527177b8392f4cbd098bbc4ed014cd65920d3e62dfa473</originalsourceid><addsrcrecordid>eNp1kctqHDEQRUVIsI3jD_AmCLzJphM9evRYBuM8wJCNvRZqqXpGpluaSOrF_IC_O-q0k0Ag2kiFTt1b1EXompIPlBD5sVDaM9kRKjvNlOzUK3RBldAdVUq_bm8h-05ysjtHV6U8kXY4J0zKM3TOtBBCK32Bnu_GEVzFacTRxnQAW3GpYV4mW0OKeAYfbAWPhxOe7T5CDe4X6dJ8TCVUwIeTz2kPE254PQBOpUKrYwN9aOoZYg2bWnOZoUB0h9Nsp2YEM3YwTeUtejPaqcDVy32JHj_fPdx-7e6_f_l2--m-cz1XtaOCWs4Z23nthWSDpG7HJJVyUFyzsXeDJ1oNg-vBE9o7L3aaEc9BMD_aXvJL9H7TPeb0Y4FSzRzKOoGNkJZiWFsQEarXoqE3_6BPacmxTbdSghHKhWoU3SiXUykZRnPMYbb5ZCgxa05my8m0nMyak1l73r0oL0Pb75-O36k0gG1AaV9xD_mv9f9VfwJvLZ-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026201368</pqid></control><display><type>article</type><title>Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Cao, Zheng ; Wang, Dan ; Li, Yongsan ; Xie, Wensheng ; Wang, Xing ; Tao, Lei ; Wei, Yen ; Wang, Xiumei ; Zhao, Lingyun</creator><creatorcontrib>Cao, Zheng ; Wang, Dan ; Li, Yongsan ; Xie, Wensheng ; Wang, Xing ; Tao, Lei ; Wei, Yen ; Wang, Xiumei ; Zhao, Lingyun</creatorcontrib><description>Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe 3 O 4 nanoparticles into chitosan/polyethylene glycol (PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field (AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells (MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications.</description><identifier>ISSN: 1674-7305</identifier><identifier>EISSN: 1869-1889</identifier><identifier>DOI: 10.1007/s11427-017-9287-8</identifier><identifier>PMID: 29666989</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Biocompatibility ; Biomedical and Life Sciences ; Bone growth ; Bone healing ; Chitosan ; High temperature ; Hydrogels ; Hyperthermia ; Iron oxides ; Life Sciences ; Mesenchymal stem cells ; Mesenchyme ; Nanocomposites ; Nanoparticles ; Polyethylene glycol ; Regeneration ; Research Paper ; Stem cells ; Tissue engineering</subject><ispartof>Science China. Life sciences, 2018-04, Vol.61 (4), p.448-456</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Science China Life Sciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-161a33225d9d672b71c527177b8392f4cbd098bbc4ed014cd65920d3e62dfa473</citedby><cites>FETCH-LOGICAL-c438t-161a33225d9d672b71c527177b8392f4cbd098bbc4ed014cd65920d3e62dfa473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11427-017-9287-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11427-017-9287-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29666989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Zheng</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Li, Yongsan</creatorcontrib><creatorcontrib>Xie, Wensheng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>Wei, Yen</creatorcontrib><creatorcontrib>Wang, Xiumei</creatorcontrib><creatorcontrib>Zhao, Lingyun</creatorcontrib><title>Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells</title><title>Science China. Life sciences</title><addtitle>Sci. China Life Sci</addtitle><addtitle>Sci China Life Sci</addtitle><description>Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe 3 O 4 nanoparticles into chitosan/polyethylene glycol (PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field (AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells (MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications.</description><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Chitosan</subject><subject>High temperature</subject><subject>Hydrogels</subject><subject>Hyperthermia</subject><subject>Iron oxides</subject><subject>Life Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchyme</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polyethylene glycol</subject><subject>Regeneration</subject><subject>Research Paper</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><issn>1674-7305</issn><issn>1869-1889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctqHDEQRUVIsI3jD_AmCLzJphM9evRYBuM8wJCNvRZqqXpGpluaSOrF_IC_O-q0k0Ag2kiFTt1b1EXompIPlBD5sVDaM9kRKjvNlOzUK3RBldAdVUq_bm8h-05ysjtHV6U8kXY4J0zKM3TOtBBCK32Bnu_GEVzFacTRxnQAW3GpYV4mW0OKeAYfbAWPhxOe7T5CDe4X6dJ8TCVUwIeTz2kPE254PQBOpUKrYwN9aOoZYg2bWnOZoUB0h9Nsp2YEM3YwTeUtejPaqcDVy32JHj_fPdx-7e6_f_l2--m-cz1XtaOCWs4Z23nthWSDpG7HJJVyUFyzsXeDJ1oNg-vBE9o7L3aaEc9BMD_aXvJL9H7TPeb0Y4FSzRzKOoGNkJZiWFsQEarXoqE3_6BPacmxTbdSghHKhWoU3SiXUykZRnPMYbb5ZCgxa05my8m0nMyak1l73r0oL0Pb75-O36k0gG1AaV9xD_mv9f9VfwJvLZ-C</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Cao, Zheng</creator><creator>Wang, Dan</creator><creator>Li, Yongsan</creator><creator>Xie, Wensheng</creator><creator>Wang, Xing</creator><creator>Tao, Lei</creator><creator>Wei, Yen</creator><creator>Wang, Xiumei</creator><creator>Zhao, Lingyun</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20180401</creationdate><title>Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells</title><author>Cao, Zheng ; Wang, Dan ; Li, Yongsan ; Xie, Wensheng ; Wang, Xing ; Tao, Lei ; Wei, Yen ; Wang, Xiumei ; Zhao, Lingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-161a33225d9d672b71c527177b8392f4cbd098bbc4ed014cd65920d3e62dfa473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Chitosan</topic><topic>High temperature</topic><topic>Hydrogels</topic><topic>Hyperthermia</topic><topic>Iron oxides</topic><topic>Life Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchyme</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polyethylene glycol</topic><topic>Regeneration</topic><topic>Research Paper</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zheng</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Li, Yongsan</creatorcontrib><creatorcontrib>Xie, Wensheng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>Wei, Yen</creatorcontrib><creatorcontrib>Wang, Xiumei</creatorcontrib><creatorcontrib>Zhao, Lingyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Science China. Life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Zheng</au><au>Wang, Dan</au><au>Li, Yongsan</au><au>Xie, Wensheng</au><au>Wang, Xing</au><au>Tao, Lei</au><au>Wei, Yen</au><au>Wang, Xiumei</au><au>Zhao, Lingyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells</atitle><jtitle>Science China. Life sciences</jtitle><stitle>Sci. China Life Sci</stitle><addtitle>Sci China Life Sci</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>61</volume><issue>4</issue><spage>448</spage><epage>456</epage><pages>448-456</pages><issn>1674-7305</issn><eissn>1869-1889</eissn><abstract>Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe 3 O 4 nanoparticles into chitosan/polyethylene glycol (PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field (AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells (MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications.</abstract><cop>Beijing</cop><pub>Science China Press</pub><pmid>29666989</pmid><doi>10.1007/s11427-017-9287-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7305
ispartof Science China. Life sciences, 2018-04, Vol.61 (4), p.448-456
issn 1674-7305
1869-1889
language eng
recordid cdi_proquest_miscellaneous_2027068496
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Biocompatibility
Biomedical and Life Sciences
Bone growth
Bone healing
Chitosan
High temperature
Hydrogels
Hyperthermia
Iron oxides
Life Sciences
Mesenchymal stem cells
Mesenchyme
Nanocomposites
Nanoparticles
Polyethylene glycol
Regeneration
Research Paper
Stem cells
Tissue engineering
title Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20nanoheat%20stimulation%20mediated%20by%20magnetic%20nanocomposite%20hydrogel%20on%20the%20osteogenic%20differentiation%20of%20mesenchymal%20stem%20cells&rft.jtitle=Science%20China.%20Life%20sciences&rft.au=Cao,%20Zheng&rft.date=2018-04-01&rft.volume=61&rft.issue=4&rft.spage=448&rft.epage=456&rft.pages=448-456&rft.issn=1674-7305&rft.eissn=1869-1889&rft_id=info:doi/10.1007/s11427-017-9287-8&rft_dat=%3Cproquest_cross%3E2027068496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2026201368&rft_id=info:pmid/29666989&rfr_iscdi=true