Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip

Isolating and in situ profiling the heterogeneous molecular phenotype of circulating tumor cells are of great significance for clinical cancer diagnosis and personalized therapy. Herein, an on‐chip strategy is proposed that combines size‐based microfluidic cell isolation with multiple spectrally ort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-05, Vol.14 (20), p.e1704433-n/a
Hauptverfasser: Zhang, Yizhi, Wang, Zhuyuan, Wu, Lei, Zong, Shenfei, Yun, Binfeng, Cui, Yiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page e1704433
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator Zhang, Yizhi
Wang, Zhuyuan
Wu, Lei
Zong, Shenfei
Yun, Binfeng
Cui, Yiping
description Isolating and in situ profiling the heterogeneous molecular phenotype of circulating tumor cells are of great significance for clinical cancer diagnosis and personalized therapy. Herein, an on‐chip strategy is proposed that combines size‐based microfluidic cell isolation with multiple spectrally orthogonal surface‐enhanced Raman spectroscopy (SERS) analysis for in situ profiling of cell membrane proteins and identification of cancer subpopulations. With the developed microfluidic chip, tumor cells are sieved from blood on the basis of size discrepancy. To enable multiplex phenotypic analysis, three kinds of spectrally orthogonal SERS aptamer nanovectors are designed, providing individual cells with composite spectral signatures in accordance with surface protein expression. Next, to statistically demultiplex the complex SERS signature and profile the cellular proteomic phenotype, a revised classic least square algorithm is employed to obtain the 3D phenotypic information at single‐cell resolution. Combined with categorization algorithm partial least square discriminate analysis, cells from different human breast cancer subtypes can be reliably classified with high sensitivity and selectivity. The results demonstrate that this platform can identify cancer subtypes with the spectral information correlated to the clinically relevant surface receptors, which holds great potential for clinical cancer diagnosis and precision medicine. For in situ profiling of cell membrane proteins and identification of cancer subpopulations, an on‐chip strategy that combines size‐based microfluidic cell isolation with multiple spectrally orthogonal surface‐enhanced Raman spectroscopy (SERS) analysis is proposed. Employing multivariate spectral analysis, the 3D phenotypic information and corresponding subtype of captured circulating tumor cells can be readily obtained according to their composite SERS signatures.
doi_str_mv 10.1002/smll.201704433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2027067012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047441403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-8faf7d8081786b1a62e13b0e31e5371a9cd2858149cd5cfa5e674456e0991f963</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EoqVw5YgsceGyi8d27ORYRaVU2qUV254jb2JTV04c7LjtvkafGEdbFolLTx5rvvk09o_QRyBLIIR-jb1zS0pAEs4Ze4WOQQBbiJJWrw81kCP0LsY7QhhQLt-iI1oJUVDJj9FT7futHezwC6-Tm-zo9CPenP3c4B9q8Pe6nXyIWA3dvn2vglWTxqeDcrtoIzY-4IsBb-yU8FXwxrpZ5Q2ubWiTU9N8vU59xmrtHL661YOfdqPGN3FuKby2bZ5zyXa2xfWtHd-jN0a5qD88nyfo5tvZdf19sbo8v6hPV4uWScYWpVFGdiUpQZZiC0pQDWxLNANdMAmqajtaFiXwXBStUYUWkvNCaFJVYCrBTtCXvXcM_nfScWp6G9u8pBq0T7GhhEoiJAGa0c__oXc-hfwHM8WzFjhhmVruqfygGIM2zRhsr8KuAdLMaTVzWs0hrTzw6Vmbtr3uDvjfeDJQ7YEH6_TuBV2zWa9W_-R_AEPkod4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047441403</pqid></control><display><type>article</type><title>Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Yizhi ; Wang, Zhuyuan ; Wu, Lei ; Zong, Shenfei ; Yun, Binfeng ; Cui, Yiping</creator><creatorcontrib>Zhang, Yizhi ; Wang, Zhuyuan ; Wu, Lei ; Zong, Shenfei ; Yun, Binfeng ; Cui, Yiping</creatorcontrib><description>Isolating and in situ profiling the heterogeneous molecular phenotype of circulating tumor cells are of great significance for clinical cancer diagnosis and personalized therapy. Herein, an on‐chip strategy is proposed that combines size‐based microfluidic cell isolation with multiple spectrally orthogonal surface‐enhanced Raman spectroscopy (SERS) analysis for in situ profiling of cell membrane proteins and identification of cancer subpopulations. With the developed microfluidic chip, tumor cells are sieved from blood on the basis of size discrepancy. To enable multiplex phenotypic analysis, three kinds of spectrally orthogonal SERS aptamer nanovectors are designed, providing individual cells with composite spectral signatures in accordance with surface protein expression. Next, to statistically demultiplex the complex SERS signature and profile the cellular proteomic phenotype, a revised classic least square algorithm is employed to obtain the 3D phenotypic information at single‐cell resolution. Combined with categorization algorithm partial least square discriminate analysis, cells from different human breast cancer subtypes can be reliably classified with high sensitivity and selectivity. The results demonstrate that this platform can identify cancer subtypes with the spectral information correlated to the clinically relevant surface receptors, which holds great potential for clinical cancer diagnosis and precision medicine. For in situ profiling of cell membrane proteins and identification of cancer subpopulations, an on‐chip strategy that combines size‐based microfluidic cell isolation with multiple spectrally orthogonal surface‐enhanced Raman spectroscopy (SERS) analysis is proposed. Employing multivariate spectral analysis, the 3D phenotypic information and corresponding subtype of captured circulating tumor cells can be readily obtained according to their composite SERS signatures.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201704433</identifier><identifier>PMID: 29665274</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Cancer ; circulating tumor cells ; Diagnosis ; Genotype &amp; phenotype ; Least squares ; Medical diagnosis ; microfluidics ; Molecular chains ; Multiplexing ; Multivariate analysis ; Nanotechnology ; phenotypes ; Proteins ; Receptors ; SERS ; Spectra ; Spectral signatures ; Tumors</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-05, Vol.14 (20), p.e1704433-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-8faf7d8081786b1a62e13b0e31e5371a9cd2858149cd5cfa5e674456e0991f963</citedby><cites>FETCH-LOGICAL-c3733-8faf7d8081786b1a62e13b0e31e5371a9cd2858149cd5cfa5e674456e0991f963</cites><orcidid>0000-0002-4648-2506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201704433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201704433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29665274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yizhi</creatorcontrib><creatorcontrib>Wang, Zhuyuan</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zong, Shenfei</creatorcontrib><creatorcontrib>Yun, Binfeng</creatorcontrib><creatorcontrib>Cui, Yiping</creatorcontrib><title>Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Isolating and in situ profiling the heterogeneous molecular phenotype of circulating tumor cells are of great significance for clinical cancer diagnosis and personalized therapy. Herein, an on‐chip strategy is proposed that combines size‐based microfluidic cell isolation with multiple spectrally orthogonal surface‐enhanced Raman spectroscopy (SERS) analysis for in situ profiling of cell membrane proteins and identification of cancer subpopulations. With the developed microfluidic chip, tumor cells are sieved from blood on the basis of size discrepancy. To enable multiplex phenotypic analysis, three kinds of spectrally orthogonal SERS aptamer nanovectors are designed, providing individual cells with composite spectral signatures in accordance with surface protein expression. Next, to statistically demultiplex the complex SERS signature and profile the cellular proteomic phenotype, a revised classic least square algorithm is employed to obtain the 3D phenotypic information at single‐cell resolution. Combined with categorization algorithm partial least square discriminate analysis, cells from different human breast cancer subtypes can be reliably classified with high sensitivity and selectivity. The results demonstrate that this platform can identify cancer subtypes with the spectral information correlated to the clinically relevant surface receptors, which holds great potential for clinical cancer diagnosis and precision medicine. For in situ profiling of cell membrane proteins and identification of cancer subpopulations, an on‐chip strategy that combines size‐based microfluidic cell isolation with multiple spectrally orthogonal surface‐enhanced Raman spectroscopy (SERS) analysis is proposed. Employing multivariate spectral analysis, the 3D phenotypic information and corresponding subtype of captured circulating tumor cells can be readily obtained according to their composite SERS signatures.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>circulating tumor cells</subject><subject>Diagnosis</subject><subject>Genotype &amp; phenotype</subject><subject>Least squares</subject><subject>Medical diagnosis</subject><subject>microfluidics</subject><subject>Molecular chains</subject><subject>Multiplexing</subject><subject>Multivariate analysis</subject><subject>Nanotechnology</subject><subject>phenotypes</subject><subject>Proteins</subject><subject>Receptors</subject><subject>SERS</subject><subject>Spectra</subject><subject>Spectral signatures</subject><subject>Tumors</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EoqVw5YgsceGyi8d27ORYRaVU2qUV254jb2JTV04c7LjtvkafGEdbFolLTx5rvvk09o_QRyBLIIR-jb1zS0pAEs4Ze4WOQQBbiJJWrw81kCP0LsY7QhhQLt-iI1oJUVDJj9FT7futHezwC6-Tm-zo9CPenP3c4B9q8Pe6nXyIWA3dvn2vglWTxqeDcrtoIzY-4IsBb-yU8FXwxrpZ5Q2ubWiTU9N8vU59xmrtHL661YOfdqPGN3FuKby2bZ5zyXa2xfWtHd-jN0a5qD88nyfo5tvZdf19sbo8v6hPV4uWScYWpVFGdiUpQZZiC0pQDWxLNANdMAmqajtaFiXwXBStUYUWkvNCaFJVYCrBTtCXvXcM_nfScWp6G9u8pBq0T7GhhEoiJAGa0c__oXc-hfwHM8WzFjhhmVruqfygGIM2zRhsr8KuAdLMaTVzWs0hrTzw6Vmbtr3uDvjfeDJQ7YEH6_TuBV2zWa9W_-R_AEPkod4</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Zhang, Yizhi</creator><creator>Wang, Zhuyuan</creator><creator>Wu, Lei</creator><creator>Zong, Shenfei</creator><creator>Yun, Binfeng</creator><creator>Cui, Yiping</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4648-2506</orcidid></search><sort><creationdate>201805</creationdate><title>Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip</title><author>Zhang, Yizhi ; Wang, Zhuyuan ; Wu, Lei ; Zong, Shenfei ; Yun, Binfeng ; Cui, Yiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-8faf7d8081786b1a62e13b0e31e5371a9cd2858149cd5cfa5e674456e0991f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>circulating tumor cells</topic><topic>Diagnosis</topic><topic>Genotype &amp; phenotype</topic><topic>Least squares</topic><topic>Medical diagnosis</topic><topic>microfluidics</topic><topic>Molecular chains</topic><topic>Multiplexing</topic><topic>Multivariate analysis</topic><topic>Nanotechnology</topic><topic>phenotypes</topic><topic>Proteins</topic><topic>Receptors</topic><topic>SERS</topic><topic>Spectra</topic><topic>Spectral signatures</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yizhi</creatorcontrib><creatorcontrib>Wang, Zhuyuan</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zong, Shenfei</creatorcontrib><creatorcontrib>Yun, Binfeng</creatorcontrib><creatorcontrib>Cui, Yiping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yizhi</au><au>Wang, Zhuyuan</au><au>Wu, Lei</au><au>Zong, Shenfei</au><au>Yun, Binfeng</au><au>Cui, Yiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-05</date><risdate>2018</risdate><volume>14</volume><issue>20</issue><spage>e1704433</spage><epage>n/a</epage><pages>e1704433-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Isolating and in situ profiling the heterogeneous molecular phenotype of circulating tumor cells are of great significance for clinical cancer diagnosis and personalized therapy. Herein, an on‐chip strategy is proposed that combines size‐based microfluidic cell isolation with multiple spectrally orthogonal surface‐enhanced Raman spectroscopy (SERS) analysis for in situ profiling of cell membrane proteins and identification of cancer subpopulations. With the developed microfluidic chip, tumor cells are sieved from blood on the basis of size discrepancy. To enable multiplex phenotypic analysis, three kinds of spectrally orthogonal SERS aptamer nanovectors are designed, providing individual cells with composite spectral signatures in accordance with surface protein expression. Next, to statistically demultiplex the complex SERS signature and profile the cellular proteomic phenotype, a revised classic least square algorithm is employed to obtain the 3D phenotypic information at single‐cell resolution. Combined with categorization algorithm partial least square discriminate analysis, cells from different human breast cancer subtypes can be reliably classified with high sensitivity and selectivity. The results demonstrate that this platform can identify cancer subtypes with the spectral information correlated to the clinically relevant surface receptors, which holds great potential for clinical cancer diagnosis and precision medicine. For in situ profiling of cell membrane proteins and identification of cancer subpopulations, an on‐chip strategy that combines size‐based microfluidic cell isolation with multiple spectrally orthogonal surface‐enhanced Raman spectroscopy (SERS) analysis is proposed. Employing multivariate spectral analysis, the 3D phenotypic information and corresponding subtype of captured circulating tumor cells can be readily obtained according to their composite SERS signatures.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29665274</pmid><doi>10.1002/smll.201704433</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4648-2506</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2018-05, Vol.14 (20), p.e1704433-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2027067012
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Cancer
circulating tumor cells
Diagnosis
Genotype & phenotype
Least squares
Medical diagnosis
microfluidics
Molecular chains
Multiplexing
Multivariate analysis
Nanotechnology
phenotypes
Proteins
Receptors
SERS
Spectra
Spectral signatures
Tumors
title Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Multiplex%20SERS%20Nanovectors%20and%20Multivariate%20Analysis%20for%20In%20Situ%20Profiling%20of%20Circulating%20Tumor%20Cell%20Phenotype%20Using%20a%20Microfluidic%20Chip&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Yizhi&rft.date=2018-05&rft.volume=14&rft.issue=20&rft.spage=e1704433&rft.epage=n/a&rft.pages=e1704433-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201704433&rft_dat=%3Cproquest_cross%3E2047441403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047441403&rft_id=info:pmid/29665274&rfr_iscdi=true