Particle trajectories and acceleration during 3D fan reconnection

Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2008-11, Vol.491 (1), p.289-295
Hauptverfasser: Dalla, S., Browning, P. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 1
container_start_page 289
container_title Astronomy and astrophysics (Berlin)
container_volume 491
creator Dalla, S.
Browning, P. K.
description Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.
doi_str_mv 10.1051/0004-6361:200809771
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20268550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20268550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-6f2ea81a8504497bd0af2bc221378b5c020ed91245b624ff1b754d7c8d2e3d0c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKu_wMte9LY6-c56K61VoaCCoreQzSaSus3WZAv6793S0tMwzPO-DA9ClxhuMHB8CwCsFFTgOwKgoJISH6ERZpSUIJk4RqMDcYrOcl4OK8GKjtDkxaQ-2NYVfTJLZ_suBZcLE5vCWOtal0wfulg0mxTiV0FnhTexSM52MQ70cDpHJ9602V3s5xi9z-_fpo_l4vnhaTpZlJZWtC-FJ84obBQHxipZN2A8qS0hmEpVcwsEXFNhwngtCPMe15KzRlrVEEcbsHSMrne969T9bFzu9Srk4cPWRNdtsiZAhOIcBpDuQJu6nJPzep3CyqQ_jUFvdemtDL2VoQ-6htTVvt5ka1qfTLQhH6IEFBMVZQNX7riQe_d7uJv0rYWkkmsFH3qOXz8Jns60ov94angs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20268550</pqid></control><display><type>article</type><title>Particle trajectories and acceleration during 3D fan reconnection</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dalla, S. ; Browning, P. K.</creator><creatorcontrib>Dalla, S. ; Browning, P. K.</creatorcontrib><description>Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:200809771</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>acceleration of particles ; Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Sun: flares ; Sun: particle emission</subject><ispartof>Astronomy and astrophysics (Berlin), 2008-11, Vol.491 (1), p.289-295</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-6f2ea81a8504497bd0af2bc221378b5c020ed91245b624ff1b754d7c8d2e3d0c3</citedby><cites>FETCH-LOGICAL-c393t-6f2ea81a8504497bd0af2bc221378b5c020ed91245b624ff1b754d7c8d2e3d0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20846934$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalla, S.</creatorcontrib><creatorcontrib>Browning, P. K.</creatorcontrib><title>Particle trajectories and acceleration during 3D fan reconnection</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.</description><subject>acceleration of particles</subject><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Sun: flares</subject><subject>Sun: particle emission</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKu_wMte9LY6-c56K61VoaCCoreQzSaSus3WZAv6793S0tMwzPO-DA9ClxhuMHB8CwCsFFTgOwKgoJISH6ERZpSUIJk4RqMDcYrOcl4OK8GKjtDkxaQ-2NYVfTJLZ_suBZcLE5vCWOtal0wfulg0mxTiV0FnhTexSM52MQ70cDpHJ9602V3s5xi9z-_fpo_l4vnhaTpZlJZWtC-FJ84obBQHxipZN2A8qS0hmEpVcwsEXFNhwngtCPMe15KzRlrVEEcbsHSMrne969T9bFzu9Srk4cPWRNdtsiZAhOIcBpDuQJu6nJPzep3CyqQ_jUFvdemtDL2VoQ-6htTVvt5ka1qfTLQhH6IEFBMVZQNX7riQe_d7uJv0rYWkkmsFH3qOXz8Jns60ov94angs</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Dalla, S.</creator><creator>Browning, P. K.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20081101</creationdate><title>Particle trajectories and acceleration during 3D fan reconnection</title><author>Dalla, S. ; Browning, P. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-6f2ea81a8504497bd0af2bc221378b5c020ed91245b624ff1b754d7c8d2e3d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>acceleration of particles</topic><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Sun: flares</topic><topic>Sun: particle emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalla, S.</creatorcontrib><creatorcontrib>Browning, P. K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalla, S.</au><au>Browning, P. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle trajectories and acceleration during 3D fan reconnection</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>491</volume><issue>1</issue><spage>289</spage><epage>295</epage><pages>289-295</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361:200809771</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2008-11, Vol.491 (1), p.289-295
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_20268550
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects acceleration of particles
Astronomy
Earth, ocean, space
Exact sciences and technology
Sun: flares
Sun: particle emission
title Particle trajectories and acceleration during 3D fan reconnection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20trajectories%20and%20acceleration%20during%203D%20fan%20reconnection&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Dalla,%20S.&rft.date=2008-11-01&rft.volume=491&rft.issue=1&rft.spage=289&rft.epage=295&rft.pages=289-295&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361:200809771&rft_dat=%3Cproquest_cross%3E20268550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20268550&rft_id=info:pmid/&rfr_iscdi=true