Predicting the spatial distribution of leaf litterfall in a mixed deciduous forest

An accurate prediction of the spatial distribution of litterfall can improve insight in the interaction between the canopy layer and forest floor characteristics, which is a key feature in forest nutrient cycling. Attempts to model the spatial variability of litterfall have been made across forest t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forest science 2004-12, Vol.50 (6), p.836-847
Hauptverfasser: Staelens, J, Nachtergale, L, Luyssaert, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 847
container_issue 6
container_start_page 836
container_title Forest science
container_volume 50
creator Staelens, J
Nachtergale, L
Luyssaert, S
description An accurate prediction of the spatial distribution of litterfall can improve insight in the interaction between the canopy layer and forest floor characteristics, which is a key feature in forest nutrient cycling. Attempts to model the spatial variability of litterfall have been made across forest types, but the reported models have not yet been compared. We predicted the spatial distribution of leaf litterfall for the same mixed hardwood stand using inverse distance interpolation, ordinary kriging, single and multiple regressions based on plot basal area, and three individual-tree models. Models were calibrated using litterfall data (n = 67) of white birch (Betula pendula Roth), pedunculate oak (Quercus robur L.), and northern red oak (Quercus rubra L.). Model performance was compared using an independent validation data set (n = 37). Interpolation techniques did not reliably estimate spatial patterns of leaf litterfall (r < 0.60, n = 37). However, models incorporating tree data, such as linear regressions and individual-tree models, successfully reproduced the observed spatial litterfall heterogeneity of each species (r > 0.80). No model was able to predict the variability of the total leaf litterfall of the three species. We conclude that, for an intimately mixed forest stand, a model that simulates leaf dispersal of individual trees is likely to be the best choice for predicting the spatial distribution of leaf litterfall.
doi_str_mv 10.1093/forestscience/50.6.836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20260738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>809486121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-82546a8fd39b058b8ca7e5eb96b6787b793203d9792f86999397c7301bf607073</originalsourceid><addsrcrecordid>eNqFkUlLBDEQhYMoOC5_QYMHbz1WUtNZjiJuICgu4C2k02mN9HSPSRr03xsZL3rxUnX5XtWreoQcMJgz0HjSjdGnnFzwg_MnNczFXKHYIDOmUVUoUW2SGQCrK7nQz9tkJ6U3AFAIfEbu76Jvg8theKH51dO0sjnYnrYh5RiaKYdxoGNHe29LCTn72Nm-p2Ggli7Dh29p611op3FKdO1kj2wVJPn9n75Lni7OH8-uqpvby-uz05vKLZjIleL1QljVtagbqFWjnJW-9o0WjZBKNlIjB2y11LxTQmuNWjqJwJpOgASJu-R4PXcVx_epLDbLkJzvezv44sZw4AVE9S_IFpKXN_ECHv0B38YpDuUIw7SUvEbBCiTWkItjStF3ZhXD0sZPw8B8B2J-BWJqMMKUQIrwcC3s7GjsSwzJPD1wYAigpUJW4xchQIt5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197725361</pqid></control><display><type>article</type><title>Predicting the spatial distribution of leaf litterfall in a mixed deciduous forest</title><source>EZB Free E-Journals</source><source>Oxford Journals</source><creator>Staelens, J ; Nachtergale, L ; Luyssaert, S</creator><creatorcontrib>Staelens, J ; Nachtergale, L ; Luyssaert, S</creatorcontrib><description>An accurate prediction of the spatial distribution of litterfall can improve insight in the interaction between the canopy layer and forest floor characteristics, which is a key feature in forest nutrient cycling. Attempts to model the spatial variability of litterfall have been made across forest types, but the reported models have not yet been compared. We predicted the spatial distribution of leaf litterfall for the same mixed hardwood stand using inverse distance interpolation, ordinary kriging, single and multiple regressions based on plot basal area, and three individual-tree models. Models were calibrated using litterfall data (n = 67) of white birch (Betula pendula Roth), pedunculate oak (Quercus robur L.), and northern red oak (Quercus rubra L.). Model performance was compared using an independent validation data set (n = 37). Interpolation techniques did not reliably estimate spatial patterns of leaf litterfall (r &lt; 0.60, n = 37). However, models incorporating tree data, such as linear regressions and individual-tree models, successfully reproduced the observed spatial litterfall heterogeneity of each species (r &gt; 0.80). No model was able to predict the variability of the total leaf litterfall of the three species. We conclude that, for an intimately mixed forest stand, a model that simulates leaf dispersal of individual trees is likely to be the best choice for predicting the spatial distribution of leaf litterfall.</description><identifier>ISSN: 0015-749X</identifier><identifier>EISSN: 1938-3738</identifier><identifier>DOI: 10.1093/forestscience/50.6.836</identifier><language>eng</language><publisher>Bethesda: Oxford University Press</publisher><subject>Betula pendula ; biogeochemical cycles ; canopy ; deciduous forests ; forest litter ; Forest soils ; forest trees ; Litter ; mathematical models ; Measures of variability ; model validation ; prediction ; Quercus robur ; Quercus rubra ; regression analysis ; spatial distribution ; spatial variation ; Trees ; Wood</subject><ispartof>Forest science, 2004-12, Vol.50 (6), p.836-847</ispartof><rights>Copyright Society of American Foresters Dec 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-82546a8fd39b058b8ca7e5eb96b6787b793203d9792f86999397c7301bf607073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Staelens, J</creatorcontrib><creatorcontrib>Nachtergale, L</creatorcontrib><creatorcontrib>Luyssaert, S</creatorcontrib><title>Predicting the spatial distribution of leaf litterfall in a mixed deciduous forest</title><title>Forest science</title><description>An accurate prediction of the spatial distribution of litterfall can improve insight in the interaction between the canopy layer and forest floor characteristics, which is a key feature in forest nutrient cycling. Attempts to model the spatial variability of litterfall have been made across forest types, but the reported models have not yet been compared. We predicted the spatial distribution of leaf litterfall for the same mixed hardwood stand using inverse distance interpolation, ordinary kriging, single and multiple regressions based on plot basal area, and three individual-tree models. Models were calibrated using litterfall data (n = 67) of white birch (Betula pendula Roth), pedunculate oak (Quercus robur L.), and northern red oak (Quercus rubra L.). Model performance was compared using an independent validation data set (n = 37). Interpolation techniques did not reliably estimate spatial patterns of leaf litterfall (r &lt; 0.60, n = 37). However, models incorporating tree data, such as linear regressions and individual-tree models, successfully reproduced the observed spatial litterfall heterogeneity of each species (r &gt; 0.80). No model was able to predict the variability of the total leaf litterfall of the three species. We conclude that, for an intimately mixed forest stand, a model that simulates leaf dispersal of individual trees is likely to be the best choice for predicting the spatial distribution of leaf litterfall.</description><subject>Betula pendula</subject><subject>biogeochemical cycles</subject><subject>canopy</subject><subject>deciduous forests</subject><subject>forest litter</subject><subject>Forest soils</subject><subject>forest trees</subject><subject>Litter</subject><subject>mathematical models</subject><subject>Measures of variability</subject><subject>model validation</subject><subject>prediction</subject><subject>Quercus robur</subject><subject>Quercus rubra</subject><subject>regression analysis</subject><subject>spatial distribution</subject><subject>spatial variation</subject><subject>Trees</subject><subject>Wood</subject><issn>0015-749X</issn><issn>1938-3738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUlLBDEQhYMoOC5_QYMHbz1WUtNZjiJuICgu4C2k02mN9HSPSRr03xsZL3rxUnX5XtWreoQcMJgz0HjSjdGnnFzwg_MnNczFXKHYIDOmUVUoUW2SGQCrK7nQz9tkJ6U3AFAIfEbu76Jvg8theKH51dO0sjnYnrYh5RiaKYdxoGNHe29LCTn72Nm-p2Ggli7Dh29p611op3FKdO1kj2wVJPn9n75Lni7OH8-uqpvby-uz05vKLZjIleL1QljVtagbqFWjnJW-9o0WjZBKNlIjB2y11LxTQmuNWjqJwJpOgASJu-R4PXcVx_epLDbLkJzvezv44sZw4AVE9S_IFpKXN_ECHv0B38YpDuUIw7SUvEbBCiTWkItjStF3ZhXD0sZPw8B8B2J-BWJqMMKUQIrwcC3s7GjsSwzJPD1wYAigpUJW4xchQIt5</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Staelens, J</creator><creator>Nachtergale, L</creator><creator>Luyssaert, S</creator><general>Oxford University Press</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>20041201</creationdate><title>Predicting the spatial distribution of leaf litterfall in a mixed deciduous forest</title><author>Staelens, J ; Nachtergale, L ; Luyssaert, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-82546a8fd39b058b8ca7e5eb96b6787b793203d9792f86999397c7301bf607073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Betula pendula</topic><topic>biogeochemical cycles</topic><topic>canopy</topic><topic>deciduous forests</topic><topic>forest litter</topic><topic>Forest soils</topic><topic>forest trees</topic><topic>Litter</topic><topic>mathematical models</topic><topic>Measures of variability</topic><topic>model validation</topic><topic>prediction</topic><topic>Quercus robur</topic><topic>Quercus rubra</topic><topic>regression analysis</topic><topic>spatial distribution</topic><topic>spatial variation</topic><topic>Trees</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staelens, J</creatorcontrib><creatorcontrib>Nachtergale, L</creatorcontrib><creatorcontrib>Luyssaert, S</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Forest science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staelens, J</au><au>Nachtergale, L</au><au>Luyssaert, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the spatial distribution of leaf litterfall in a mixed deciduous forest</atitle><jtitle>Forest science</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>50</volume><issue>6</issue><spage>836</spage><epage>847</epage><pages>836-847</pages><issn>0015-749X</issn><eissn>1938-3738</eissn><abstract>An accurate prediction of the spatial distribution of litterfall can improve insight in the interaction between the canopy layer and forest floor characteristics, which is a key feature in forest nutrient cycling. Attempts to model the spatial variability of litterfall have been made across forest types, but the reported models have not yet been compared. We predicted the spatial distribution of leaf litterfall for the same mixed hardwood stand using inverse distance interpolation, ordinary kriging, single and multiple regressions based on plot basal area, and three individual-tree models. Models were calibrated using litterfall data (n = 67) of white birch (Betula pendula Roth), pedunculate oak (Quercus robur L.), and northern red oak (Quercus rubra L.). Model performance was compared using an independent validation data set (n = 37). Interpolation techniques did not reliably estimate spatial patterns of leaf litterfall (r &lt; 0.60, n = 37). However, models incorporating tree data, such as linear regressions and individual-tree models, successfully reproduced the observed spatial litterfall heterogeneity of each species (r &gt; 0.80). No model was able to predict the variability of the total leaf litterfall of the three species. We conclude that, for an intimately mixed forest stand, a model that simulates leaf dispersal of individual trees is likely to be the best choice for predicting the spatial distribution of leaf litterfall.</abstract><cop>Bethesda</cop><pub>Oxford University Press</pub><doi>10.1093/forestscience/50.6.836</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0015-749X
ispartof Forest science, 2004-12, Vol.50 (6), p.836-847
issn 0015-749X
1938-3738
language eng
recordid cdi_proquest_miscellaneous_20260738
source EZB Free E-Journals; Oxford Journals
subjects Betula pendula
biogeochemical cycles
canopy
deciduous forests
forest litter
Forest soils
forest trees
Litter
mathematical models
Measures of variability
model validation
prediction
Quercus robur
Quercus rubra
regression analysis
spatial distribution
spatial variation
Trees
Wood
title Predicting the spatial distribution of leaf litterfall in a mixed deciduous forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20spatial%20distribution%20of%20leaf%20litterfall%20in%20a%20mixed%20deciduous%20forest&rft.jtitle=Forest%20science&rft.au=Staelens,%20J&rft.date=2004-12-01&rft.volume=50&rft.issue=6&rft.spage=836&rft.epage=847&rft.pages=836-847&rft.issn=0015-749X&rft.eissn=1938-3738&rft_id=info:doi/10.1093/forestscience/50.6.836&rft_dat=%3Cproquest_cross%3E809486121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197725361&rft_id=info:pmid/&rfr_iscdi=true