Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm

This paper introduces the dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi–Sugeno (TS) type fuzzy inference system with on-line and local learning algorithm for complex dynamic hydrological modeling tasks. Our DNFLMS is aimed to implement a fast training speed wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 2009, Vol.32 (1), p.110-119
Hauptverfasser: Hong, Yoon-Seok Timothy, White, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 110
container_title Advances in water resources
container_volume 32
creator Hong, Yoon-Seok Timothy
White, Paul A.
description This paper introduces the dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi–Sugeno (TS) type fuzzy inference system with on-line and local learning algorithm for complex dynamic hydrological modeling tasks. Our DNFLMS is aimed to implement a fast training speed with the capability of on-line simulation where model adaptation occurs at the arrival of each new item of hydrological data. The DNFLMS applies an on-line, one-pass, training procedure to create and update fuzzy local models dynamically. The extended Kalman filtering algorithm is then implemented to optimize the parameters of the consequence part of each fuzzy model during the training phase. Local generalization in the DNFLMS is employed to optimize the parameters of each fuzzy model separately, region-by-region, using subsets of training data rather than all training data. The proposed DNFLMS is applied to develop a model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatt Cobb hydropower station on spring flow. It is demonstrated that the proposed DNFLMS is superior in terms of model complexity and computational efficiency when compared with models that adopt global generalization such as a multi-layer perceptron (MLP) trained with the back propagation learning algorithm and the well-known adaptive neural-fuzzy system (ANFIS).
doi_str_mv 10.1016/j.advwatres.2008.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20259514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170808001796</els_id><sourcerecordid>20259514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-1d1249405f0ea8344126edba4eac1420a971864548d54e550bc16a455ed7ffef3</originalsourceid><addsrcrecordid>eNqNkE1P3DAQhqOqlbql_Q34Qm_Zjh07H0eEWqiExIFytmbt8eJVElM7AYVfj8Miru3FI9nPO-N5iuKUw5YDr38ctmgfn3CKlLYCoM23W4D6Q7HhbSPKrlbNx2IDFXQlb6D9XHxJ6QAZlI3YFLurxcbQh7032LMhWOr9uGdzWk9kdhlx8IaNNMdQuvn5eWFpSRMN7MlP9yyMZeaJ4WhZH9YWPWEcX8P9PsTMDF-LTw77RN_e6klx9-vnn4ur8vrm8vfF-XVpZMWnklsuZCdBOSBsKym5qMnuUBIaLgVg1_C2lkq2VklSCnaG1yiVIts4R646Kb4f-z7E8HemNOnBJ0N9jyOFOWkBQnWKy_8BZV3XIoPNETQxpBTJ6YfoB4yL5qBX-fqg3-XrVf76kOXn5NnbCEzZios4Gp_e44KDyOt0mTs9cg6Dxn3MzN2tAF4BV23L2yoT50eCsrpHT1En42k0ZH0kM2kb_D9_8wLit6lK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20246662</pqid></control><display><type>article</type><title>Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hong, Yoon-Seok Timothy ; White, Paul A.</creator><creatorcontrib>Hong, Yoon-Seok Timothy ; White, Paul A.</creatorcontrib><description>This paper introduces the dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi–Sugeno (TS) type fuzzy inference system with on-line and local learning algorithm for complex dynamic hydrological modeling tasks. Our DNFLMS is aimed to implement a fast training speed with the capability of on-line simulation where model adaptation occurs at the arrival of each new item of hydrological data. The DNFLMS applies an on-line, one-pass, training procedure to create and update fuzzy local models dynamically. The extended Kalman filtering algorithm is then implemented to optimize the parameters of the consequence part of each fuzzy model during the training phase. Local generalization in the DNFLMS is employed to optimize the parameters of each fuzzy model separately, region-by-region, using subsets of training data rather than all training data. The proposed DNFLMS is applied to develop a model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatt Cobb hydropower station on spring flow. It is demonstrated that the proposed DNFLMS is superior in terms of model complexity and computational efficiency when compared with models that adopt global generalization such as a multi-layer perceptron (MLP) trained with the back propagation learning algorithm and the well-known adaptive neural-fuzzy system (ANFIS).</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2008.10.006</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>algorithms ; dynamic neuro-fuzzy local modeling system ; Dynamic neuro-fuzzy system ; dynamic Takagi-Sugeno fuzzy inference system ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Extended Kalman filtering algorithm ; Freshwater ; fuzzy logic ; hydrologic models ; Hydrological modeling ; Hydrology ; Hydrology. Hydrogeology ; Hydropower station discharge ; Local generalization ; mathematical models ; neural networks ; On-line clustering algorithm ; simulation models ; Spring flow forecasting ; springs (water) ; water flow</subject><ispartof>Advances in water resources, 2009, Vol.32 (1), p.110-119</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-1d1249405f0ea8344126edba4eac1420a971864548d54e550bc16a455ed7ffef3</citedby><cites>FETCH-LOGICAL-c431t-1d1249405f0ea8344126edba4eac1420a971864548d54e550bc16a455ed7ffef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advwatres.2008.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4023,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21029719$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Yoon-Seok Timothy</creatorcontrib><creatorcontrib>White, Paul A.</creatorcontrib><title>Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm</title><title>Advances in water resources</title><description>This paper introduces the dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi–Sugeno (TS) type fuzzy inference system with on-line and local learning algorithm for complex dynamic hydrological modeling tasks. Our DNFLMS is aimed to implement a fast training speed with the capability of on-line simulation where model adaptation occurs at the arrival of each new item of hydrological data. The DNFLMS applies an on-line, one-pass, training procedure to create and update fuzzy local models dynamically. The extended Kalman filtering algorithm is then implemented to optimize the parameters of the consequence part of each fuzzy model during the training phase. Local generalization in the DNFLMS is employed to optimize the parameters of each fuzzy model separately, region-by-region, using subsets of training data rather than all training data. The proposed DNFLMS is applied to develop a model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatt Cobb hydropower station on spring flow. It is demonstrated that the proposed DNFLMS is superior in terms of model complexity and computational efficiency when compared with models that adopt global generalization such as a multi-layer perceptron (MLP) trained with the back propagation learning algorithm and the well-known adaptive neural-fuzzy system (ANFIS).</description><subject>algorithms</subject><subject>dynamic neuro-fuzzy local modeling system</subject><subject>Dynamic neuro-fuzzy system</subject><subject>dynamic Takagi-Sugeno fuzzy inference system</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Extended Kalman filtering algorithm</subject><subject>Freshwater</subject><subject>fuzzy logic</subject><subject>hydrologic models</subject><subject>Hydrological modeling</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydropower station discharge</subject><subject>Local generalization</subject><subject>mathematical models</subject><subject>neural networks</subject><subject>On-line clustering algorithm</subject><subject>simulation models</subject><subject>Spring flow forecasting</subject><subject>springs (water)</subject><subject>water flow</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkE1P3DAQhqOqlbql_Q34Qm_Zjh07H0eEWqiExIFytmbt8eJVElM7AYVfj8Miru3FI9nPO-N5iuKUw5YDr38ctmgfn3CKlLYCoM23W4D6Q7HhbSPKrlbNx2IDFXQlb6D9XHxJ6QAZlI3YFLurxcbQh7032LMhWOr9uGdzWk9kdhlx8IaNNMdQuvn5eWFpSRMN7MlP9yyMZeaJ4WhZH9YWPWEcX8P9PsTMDF-LTw77RN_e6klx9-vnn4ur8vrm8vfF-XVpZMWnklsuZCdBOSBsKym5qMnuUBIaLgVg1_C2lkq2VklSCnaG1yiVIts4R646Kb4f-z7E8HemNOnBJ0N9jyOFOWkBQnWKy_8BZV3XIoPNETQxpBTJ6YfoB4yL5qBX-fqg3-XrVf76kOXn5NnbCEzZios4Gp_e44KDyOt0mTs9cg6Dxn3MzN2tAF4BV23L2yoT50eCsrpHT1En42k0ZH0kM2kb_D9_8wLit6lK</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Hong, Yoon-Seok Timothy</creator><creator>White, Paul A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>2009</creationdate><title>Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm</title><author>Hong, Yoon-Seok Timothy ; White, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-1d1249405f0ea8344126edba4eac1420a971864548d54e550bc16a455ed7ffef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>algorithms</topic><topic>dynamic neuro-fuzzy local modeling system</topic><topic>Dynamic neuro-fuzzy system</topic><topic>dynamic Takagi-Sugeno fuzzy inference system</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Extended Kalman filtering algorithm</topic><topic>Freshwater</topic><topic>fuzzy logic</topic><topic>hydrologic models</topic><topic>Hydrological modeling</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydropower station discharge</topic><topic>Local generalization</topic><topic>mathematical models</topic><topic>neural networks</topic><topic>On-line clustering algorithm</topic><topic>simulation models</topic><topic>Spring flow forecasting</topic><topic>springs (water)</topic><topic>water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yoon-Seok Timothy</creatorcontrib><creatorcontrib>White, Paul A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Yoon-Seok Timothy</au><au>White, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm</atitle><jtitle>Advances in water resources</jtitle><date>2009</date><risdate>2009</risdate><volume>32</volume><issue>1</issue><spage>110</spage><epage>119</epage><pages>110-119</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>This paper introduces the dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi–Sugeno (TS) type fuzzy inference system with on-line and local learning algorithm for complex dynamic hydrological modeling tasks. Our DNFLMS is aimed to implement a fast training speed with the capability of on-line simulation where model adaptation occurs at the arrival of each new item of hydrological data. The DNFLMS applies an on-line, one-pass, training procedure to create and update fuzzy local models dynamically. The extended Kalman filtering algorithm is then implemented to optimize the parameters of the consequence part of each fuzzy model during the training phase. Local generalization in the DNFLMS is employed to optimize the parameters of each fuzzy model separately, region-by-region, using subsets of training data rather than all training data. The proposed DNFLMS is applied to develop a model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatt Cobb hydropower station on spring flow. It is demonstrated that the proposed DNFLMS is superior in terms of model complexity and computational efficiency when compared with models that adopt global generalization such as a multi-layer perceptron (MLP) trained with the back propagation learning algorithm and the well-known adaptive neural-fuzzy system (ANFIS).</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2008.10.006</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2009, Vol.32 (1), p.110-119
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_miscellaneous_20259514
source ScienceDirect Journals (5 years ago - present)
subjects algorithms
dynamic neuro-fuzzy local modeling system
Dynamic neuro-fuzzy system
dynamic Takagi-Sugeno fuzzy inference system
Earth sciences
Earth, ocean, space
Exact sciences and technology
Extended Kalman filtering algorithm
Freshwater
fuzzy logic
hydrologic models
Hydrological modeling
Hydrology
Hydrology. Hydrogeology
Hydropower station discharge
Local generalization
mathematical models
neural networks
On-line clustering algorithm
simulation models
Spring flow forecasting
springs (water)
water flow
title Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrological%20modeling%20using%20a%20dynamic%20neuro-fuzzy%20system%20with%20on-line%20and%20local%20learning%20algorithm&rft.jtitle=Advances%20in%20water%20resources&rft.au=Hong,%20Yoon-Seok%20Timothy&rft.date=2009&rft.volume=32&rft.issue=1&rft.spage=110&rft.epage=119&rft.pages=110-119&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/j.advwatres.2008.10.006&rft_dat=%3Cproquest_cross%3E20259514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20246662&rft_id=info:pmid/&rft_els_id=S0309170808001796&rfr_iscdi=true