Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study

Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2018-09, Vol.143 (6), p.1470-1482
Hauptverfasser: Shafiee, Abbas, McGovern, Jacqui A., Lahr, Christoph A., Meinert, Christoph, Moi, Davide, Wagner, Ferdinand, Landgraf, Marietta, De‐Juan‐Pardo, Elena, Mazzieri, Roberta, Hutmacher, Dietmar W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1482
container_issue 6
container_start_page 1470
container_title International journal of cancer
container_volume 143
creator Shafiee, Abbas
McGovern, Jacqui A.
Lahr, Christoph A.
Meinert, Christoph
Moi, Davide
Wagner, Ferdinand
Landgraf, Marietta
De‐Juan‐Pardo, Elena
Mazzieri, Roberta
Hutmacher, Dietmar W.
description Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, mesenchymal stem/stromal (MSCs), endothelial and hematopoietic cells in an engineered microenvironment. The bone compartment was generated by culturing the human MSCs, umbilical vein endothelial cells with gelatin methacryloyl hydrogels in the center of a melt‐electrospun polycaprolactone tubular scaffolds, which were seeded with human preosteoblasts. The tissue engineered bone (TEB) was subcutaneously implanted into the NSG mice and formed a morphologically and functionally organ bone. Mice were further humanized through the tail vein injection of human cord blood derived CD34+ cells, which then populated in the mouse bone marrow, spleen and humanized TEB (hTEB). 11 weeks after CD34+ transplantation, metastatic breast cancer cells (MDA‐MB‐231BO) were orthotopically injected. Cancer cell injection resulted in the formation of a primary tumor and metastasis to the hTEB and mouse organs. Less frequent metastasis and lower tumor burden were observed in hematochimeric mice, suggesting an immune‐mediated response against the breast cancer cells. Overall, our results demonstrate the efficacy of tissue engineering approaches to study species‐specific cancer‐bone interactions. Further studies using genetically modified hematopoietic stem cells and bioengineered microenvironments will enable us to address the specific roles of signaling molecules regulating hematopoietic niches and cancer metastasis in vivo. What's new? The skeletal system is a primary site for breast cancer metastasis but no humanized mouse model can currently faithfully mimic unique niche properties of human bone. Here the authors generated a complex tissue engineered human bone (hTEB) to recapitulate hematopoietic and metastatic features of a physiological human bone. They show that the hTEB attracted hematopoietic and cancer cells in the context of a humanized mouse model. Expression of human cytokines (GM‐CSF, IL‐7 and IL‐15) inhibited tumor growth in the hematochimeric mice, underscoring the potential for the new model to serve as a developmental platform for new therapeutic anti‐cancer agents.
doi_str_mv 10.1002/ijc.31528
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2025799200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085385183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4148-621d634aebcef499775ad2a745e4c43bbd9ef9e8980c592175d2c0411ba6dd3d3</originalsourceid><addsrcrecordid>eNp10UFPHCEcBXBiNLpVD34BQ-LFHsYFBmaGo9nYdo2Jl3qeMPDflc3AKAya6acv27E9NPFEgF9eXvIQuqDkhhLClnanb0oqWHOAFpTIuiCMikO0yH-kqGlZnaAvMe4IoVQQfoxOmKyEzLcFmtbOJQ84TnEEh1XaOvCjGu3g8ZtV-Dk55e2v-SFF67d4D5cvYdiCt-MQsIa-j1h5gzs7gN9aDxD20HqscBdAxRFr5TUE7AYDfU5IZjpDRxvVRzj_OE_R07e7n6sfxcPj9_Xq9qHQnPKmqBg1VckVdBo2XMq6FsowVXMBXPOy64yEjYRGNkQLyWgtDNOEU9qpypjSlKfoes7NlV8TxLF1Nu47Kw9Dii0jTNRSMkIyvfqP7oYUfG6XVSPKRtCmzOrrrHQYYgywaV-CdSpMLSXtfo8279H-2SPby4_E1Dkw_-TfATJYzuDd9jB9ntSu71dz5G_tSZYD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085385183</pqid></control><display><type>article</type><title>Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shafiee, Abbas ; McGovern, Jacqui A. ; Lahr, Christoph A. ; Meinert, Christoph ; Moi, Davide ; Wagner, Ferdinand ; Landgraf, Marietta ; De‐Juan‐Pardo, Elena ; Mazzieri, Roberta ; Hutmacher, Dietmar W.</creator><creatorcontrib>Shafiee, Abbas ; McGovern, Jacqui A. ; Lahr, Christoph A. ; Meinert, Christoph ; Moi, Davide ; Wagner, Ferdinand ; Landgraf, Marietta ; De‐Juan‐Pardo, Elena ; Mazzieri, Roberta ; Hutmacher, Dietmar W.</creatorcontrib><description>Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, mesenchymal stem/stromal (MSCs), endothelial and hematopoietic cells in an engineered microenvironment. The bone compartment was generated by culturing the human MSCs, umbilical vein endothelial cells with gelatin methacryloyl hydrogels in the center of a melt‐electrospun polycaprolactone tubular scaffolds, which were seeded with human preosteoblasts. The tissue engineered bone (TEB) was subcutaneously implanted into the NSG mice and formed a morphologically and functionally organ bone. Mice were further humanized through the tail vein injection of human cord blood derived CD34+ cells, which then populated in the mouse bone marrow, spleen and humanized TEB (hTEB). 11 weeks after CD34+ transplantation, metastatic breast cancer cells (MDA‐MB‐231BO) were orthotopically injected. Cancer cell injection resulted in the formation of a primary tumor and metastasis to the hTEB and mouse organs. Less frequent metastasis and lower tumor burden were observed in hematochimeric mice, suggesting an immune‐mediated response against the breast cancer cells. Overall, our results demonstrate the efficacy of tissue engineering approaches to study species‐specific cancer‐bone interactions. Further studies using genetically modified hematopoietic stem cells and bioengineered microenvironments will enable us to address the specific roles of signaling molecules regulating hematopoietic niches and cancer metastasis in vivo. What's new? The skeletal system is a primary site for breast cancer metastasis but no humanized mouse model can currently faithfully mimic unique niche properties of human bone. Here the authors generated a complex tissue engineered human bone (hTEB) to recapitulate hematopoietic and metastatic features of a physiological human bone. They show that the hTEB attracted hematopoietic and cancer cells in the context of a humanized mouse model. Expression of human cytokines (GM‐CSF, IL‐7 and IL‐15) inhibited tumor growth in the hematochimeric mice, underscoring the potential for the new model to serve as a developmental platform for new therapeutic anti‐cancer agents.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.31528</identifier><identifier>PMID: 29659011</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Animal models ; Animals ; Apoptosis ; Bioengineering ; Biomarkers, Tumor - metabolism ; biomaterial ; Bone cancer ; Bone marrow ; Bone marrow transplantation ; Bone Neoplasms - immunology ; Bone Neoplasms - metabolism ; Bone Neoplasms - secondary ; Bone Neoplasms - therapy ; Breast cancer ; Breast Neoplasms - immunology ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Breast Neoplasms - therapy ; Cancer ; cancer metastasis ; CD34 antigen ; Cell Proliferation ; Cord blood ; Disease Models, Animal ; Endothelial cells ; Female ; Gelatin ; Genetic modification ; Granulocyte-Macrophage Colony-Stimulating Factor - metabolism ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; humanized mouse model ; Humans ; Hydrogels ; Immune system ; Immune System - immunology ; Injection ; Interleukin-15 - metabolism ; Interleukin-7 - metabolism ; Medical research ; melt electrospinning ; Mesenchymal Stem Cell Transplantation ; Mesenchyme ; Metastases ; Metastasis ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Microenvironments ; Niches ; Organs ; Polycaprolactone ; Progenitor cells ; Spleen ; stem cell ; Stem cell transplantation ; Stem cells ; Tissue engineering ; Transplantation ; Tumor Cells, Cultured ; Umbilical vein ; Xenograft Model Antitumor Assays</subject><ispartof>International journal of cancer, 2018-09, Vol.143 (6), p.1470-1482</ispartof><rights>2018 UICC</rights><rights>2018 UICC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4148-621d634aebcef499775ad2a745e4c43bbd9ef9e8980c592175d2c0411ba6dd3d3</citedby><cites>FETCH-LOGICAL-c4148-621d634aebcef499775ad2a745e4c43bbd9ef9e8980c592175d2c0411ba6dd3d3</cites><orcidid>0000-0002-8885-9025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.31528$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.31528$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29659011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shafiee, Abbas</creatorcontrib><creatorcontrib>McGovern, Jacqui A.</creatorcontrib><creatorcontrib>Lahr, Christoph A.</creatorcontrib><creatorcontrib>Meinert, Christoph</creatorcontrib><creatorcontrib>Moi, Davide</creatorcontrib><creatorcontrib>Wagner, Ferdinand</creatorcontrib><creatorcontrib>Landgraf, Marietta</creatorcontrib><creatorcontrib>De‐Juan‐Pardo, Elena</creatorcontrib><creatorcontrib>Mazzieri, Roberta</creatorcontrib><creatorcontrib>Hutmacher, Dietmar W.</creatorcontrib><title>Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, mesenchymal stem/stromal (MSCs), endothelial and hematopoietic cells in an engineered microenvironment. The bone compartment was generated by culturing the human MSCs, umbilical vein endothelial cells with gelatin methacryloyl hydrogels in the center of a melt‐electrospun polycaprolactone tubular scaffolds, which were seeded with human preosteoblasts. The tissue engineered bone (TEB) was subcutaneously implanted into the NSG mice and formed a morphologically and functionally organ bone. Mice were further humanized through the tail vein injection of human cord blood derived CD34+ cells, which then populated in the mouse bone marrow, spleen and humanized TEB (hTEB). 11 weeks after CD34+ transplantation, metastatic breast cancer cells (MDA‐MB‐231BO) were orthotopically injected. Cancer cell injection resulted in the formation of a primary tumor and metastasis to the hTEB and mouse organs. Less frequent metastasis and lower tumor burden were observed in hematochimeric mice, suggesting an immune‐mediated response against the breast cancer cells. Overall, our results demonstrate the efficacy of tissue engineering approaches to study species‐specific cancer‐bone interactions. Further studies using genetically modified hematopoietic stem cells and bioengineered microenvironments will enable us to address the specific roles of signaling molecules regulating hematopoietic niches and cancer metastasis in vivo. What's new? The skeletal system is a primary site for breast cancer metastasis but no humanized mouse model can currently faithfully mimic unique niche properties of human bone. Here the authors generated a complex tissue engineered human bone (hTEB) to recapitulate hematopoietic and metastatic features of a physiological human bone. They show that the hTEB attracted hematopoietic and cancer cells in the context of a humanized mouse model. Expression of human cytokines (GM‐CSF, IL‐7 and IL‐15) inhibited tumor growth in the hematochimeric mice, underscoring the potential for the new model to serve as a developmental platform for new therapeutic anti‐cancer agents.</description><subject>3D printing</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Bioengineering</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>biomaterial</subject><subject>Bone cancer</subject><subject>Bone marrow</subject><subject>Bone marrow transplantation</subject><subject>Bone Neoplasms - immunology</subject><subject>Bone Neoplasms - metabolism</subject><subject>Bone Neoplasms - secondary</subject><subject>Bone Neoplasms - therapy</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - immunology</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Breast Neoplasms - therapy</subject><subject>Cancer</subject><subject>cancer metastasis</subject><subject>CD34 antigen</subject><subject>Cell Proliferation</subject><subject>Cord blood</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Female</subject><subject>Gelatin</subject><subject>Genetic modification</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>humanized mouse model</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Immune system</subject><subject>Immune System - immunology</subject><subject>Injection</subject><subject>Interleukin-15 - metabolism</subject><subject>Interleukin-7 - metabolism</subject><subject>Medical research</subject><subject>melt electrospinning</subject><subject>Mesenchymal Stem Cell Transplantation</subject><subject>Mesenchyme</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Microenvironments</subject><subject>Niches</subject><subject>Organs</subject><subject>Polycaprolactone</subject><subject>Progenitor cells</subject><subject>Spleen</subject><subject>stem cell</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Transplantation</subject><subject>Tumor Cells, Cultured</subject><subject>Umbilical vein</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10UFPHCEcBXBiNLpVD34BQ-LFHsYFBmaGo9nYdo2Jl3qeMPDflc3AKAya6acv27E9NPFEgF9eXvIQuqDkhhLClnanb0oqWHOAFpTIuiCMikO0yH-kqGlZnaAvMe4IoVQQfoxOmKyEzLcFmtbOJQ84TnEEh1XaOvCjGu3g8ZtV-Dk55e2v-SFF67d4D5cvYdiCt-MQsIa-j1h5gzs7gN9aDxD20HqscBdAxRFr5TUE7AYDfU5IZjpDRxvVRzj_OE_R07e7n6sfxcPj9_Xq9qHQnPKmqBg1VckVdBo2XMq6FsowVXMBXPOy64yEjYRGNkQLyWgtDNOEU9qpypjSlKfoes7NlV8TxLF1Nu47Kw9Dii0jTNRSMkIyvfqP7oYUfG6XVSPKRtCmzOrrrHQYYgywaV-CdSpMLSXtfo8279H-2SPby4_E1Dkw_-TfATJYzuDd9jB9ntSu71dz5G_tSZYD</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Shafiee, Abbas</creator><creator>McGovern, Jacqui A.</creator><creator>Lahr, Christoph A.</creator><creator>Meinert, Christoph</creator><creator>Moi, Davide</creator><creator>Wagner, Ferdinand</creator><creator>Landgraf, Marietta</creator><creator>De‐Juan‐Pardo, Elena</creator><creator>Mazzieri, Roberta</creator><creator>Hutmacher, Dietmar W.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8885-9025</orcidid></search><sort><creationdate>20180915</creationdate><title>Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study</title><author>Shafiee, Abbas ; McGovern, Jacqui A. ; Lahr, Christoph A. ; Meinert, Christoph ; Moi, Davide ; Wagner, Ferdinand ; Landgraf, Marietta ; De‐Juan‐Pardo, Elena ; Mazzieri, Roberta ; Hutmacher, Dietmar W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4148-621d634aebcef499775ad2a745e4c43bbd9ef9e8980c592175d2c0411ba6dd3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Bioengineering</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>biomaterial</topic><topic>Bone cancer</topic><topic>Bone marrow</topic><topic>Bone marrow transplantation</topic><topic>Bone Neoplasms - immunology</topic><topic>Bone Neoplasms - metabolism</topic><topic>Bone Neoplasms - secondary</topic><topic>Bone Neoplasms - therapy</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - immunology</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Breast Neoplasms - therapy</topic><topic>Cancer</topic><topic>cancer metastasis</topic><topic>CD34 antigen</topic><topic>Cell Proliferation</topic><topic>Cord blood</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Female</topic><topic>Gelatin</topic><topic>Genetic modification</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>humanized mouse model</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Immune system</topic><topic>Immune System - immunology</topic><topic>Injection</topic><topic>Interleukin-15 - metabolism</topic><topic>Interleukin-7 - metabolism</topic><topic>Medical research</topic><topic>melt electrospinning</topic><topic>Mesenchymal Stem Cell Transplantation</topic><topic>Mesenchyme</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Microenvironments</topic><topic>Niches</topic><topic>Organs</topic><topic>Polycaprolactone</topic><topic>Progenitor cells</topic><topic>Spleen</topic><topic>stem cell</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Transplantation</topic><topic>Tumor Cells, Cultured</topic><topic>Umbilical vein</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafiee, Abbas</creatorcontrib><creatorcontrib>McGovern, Jacqui A.</creatorcontrib><creatorcontrib>Lahr, Christoph A.</creatorcontrib><creatorcontrib>Meinert, Christoph</creatorcontrib><creatorcontrib>Moi, Davide</creatorcontrib><creatorcontrib>Wagner, Ferdinand</creatorcontrib><creatorcontrib>Landgraf, Marietta</creatorcontrib><creatorcontrib>De‐Juan‐Pardo, Elena</creatorcontrib><creatorcontrib>Mazzieri, Roberta</creatorcontrib><creatorcontrib>Hutmacher, Dietmar W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafiee, Abbas</au><au>McGovern, Jacqui A.</au><au>Lahr, Christoph A.</au><au>Meinert, Christoph</au><au>Moi, Davide</au><au>Wagner, Ferdinand</au><au>Landgraf, Marietta</au><au>De‐Juan‐Pardo, Elena</au><au>Mazzieri, Roberta</au><au>Hutmacher, Dietmar W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2018-09-15</date><risdate>2018</risdate><volume>143</volume><issue>6</issue><spage>1470</spage><epage>1482</epage><pages>1470-1482</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><abstract>Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, mesenchymal stem/stromal (MSCs), endothelial and hematopoietic cells in an engineered microenvironment. The bone compartment was generated by culturing the human MSCs, umbilical vein endothelial cells with gelatin methacryloyl hydrogels in the center of a melt‐electrospun polycaprolactone tubular scaffolds, which were seeded with human preosteoblasts. The tissue engineered bone (TEB) was subcutaneously implanted into the NSG mice and formed a morphologically and functionally organ bone. Mice were further humanized through the tail vein injection of human cord blood derived CD34+ cells, which then populated in the mouse bone marrow, spleen and humanized TEB (hTEB). 11 weeks after CD34+ transplantation, metastatic breast cancer cells (MDA‐MB‐231BO) were orthotopically injected. Cancer cell injection resulted in the formation of a primary tumor and metastasis to the hTEB and mouse organs. Less frequent metastasis and lower tumor burden were observed in hematochimeric mice, suggesting an immune‐mediated response against the breast cancer cells. Overall, our results demonstrate the efficacy of tissue engineering approaches to study species‐specific cancer‐bone interactions. Further studies using genetically modified hematopoietic stem cells and bioengineered microenvironments will enable us to address the specific roles of signaling molecules regulating hematopoietic niches and cancer metastasis in vivo. What's new? The skeletal system is a primary site for breast cancer metastasis but no humanized mouse model can currently faithfully mimic unique niche properties of human bone. Here the authors generated a complex tissue engineered human bone (hTEB) to recapitulate hematopoietic and metastatic features of a physiological human bone. They show that the hTEB attracted hematopoietic and cancer cells in the context of a humanized mouse model. Expression of human cytokines (GM‐CSF, IL‐7 and IL‐15) inhibited tumor growth in the hematochimeric mice, underscoring the potential for the new model to serve as a developmental platform for new therapeutic anti‐cancer agents.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29659011</pmid><doi>10.1002/ijc.31528</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8885-9025</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7136
ispartof International journal of cancer, 2018-09, Vol.143 (6), p.1470-1482
issn 0020-7136
1097-0215
language eng
recordid cdi_proquest_miscellaneous_2025799200
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 3D printing
Animal models
Animals
Apoptosis
Bioengineering
Biomarkers, Tumor - metabolism
biomaterial
Bone cancer
Bone marrow
Bone marrow transplantation
Bone Neoplasms - immunology
Bone Neoplasms - metabolism
Bone Neoplasms - secondary
Bone Neoplasms - therapy
Breast cancer
Breast Neoplasms - immunology
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Breast Neoplasms - therapy
Cancer
cancer metastasis
CD34 antigen
Cell Proliferation
Cord blood
Disease Models, Animal
Endothelial cells
Female
Gelatin
Genetic modification
Granulocyte-Macrophage Colony-Stimulating Factor - metabolism
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
humanized mouse model
Humans
Hydrogels
Immune system
Immune System - immunology
Injection
Interleukin-15 - metabolism
Interleukin-7 - metabolism
Medical research
melt electrospinning
Mesenchymal Stem Cell Transplantation
Mesenchyme
Metastases
Metastasis
Mice
Mice, Inbred NOD
Mice, SCID
Microenvironments
Niches
Organs
Polycaprolactone
Progenitor cells
Spleen
stem cell
Stem cell transplantation
Stem cells
Tissue engineering
Transplantation
Tumor Cells, Cultured
Umbilical vein
Xenograft Model Antitumor Assays
title Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immune%20system%20augmentation%20via%20humanization%20using%20stem/progenitor%20cells%20and%20bioengineering%20in%20a%20breast%20cancer%20model%20study&rft.jtitle=International%20journal%20of%20cancer&rft.au=Shafiee,%20Abbas&rft.date=2018-09-15&rft.volume=143&rft.issue=6&rft.spage=1470&rft.epage=1482&rft.pages=1470-1482&rft.issn=0020-7136&rft.eissn=1097-0215&rft_id=info:doi/10.1002/ijc.31528&rft_dat=%3Cproquest_cross%3E2085385183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085385183&rft_id=info:pmid/29659011&rfr_iscdi=true