Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study
Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, m...
Gespeichert in:
Veröffentlicht in: | International journal of cancer 2018-09, Vol.143 (6), p.1470-1482 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1482 |
---|---|
container_issue | 6 |
container_start_page | 1470 |
container_title | International journal of cancer |
container_volume | 143 |
creator | Shafiee, Abbas McGovern, Jacqui A. Lahr, Christoph A. Meinert, Christoph Moi, Davide Wagner, Ferdinand Landgraf, Marietta De‐Juan‐Pardo, Elena Mazzieri, Roberta Hutmacher, Dietmar W. |
description | Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, mesenchymal stem/stromal (MSCs), endothelial and hematopoietic cells in an engineered microenvironment. The bone compartment was generated by culturing the human MSCs, umbilical vein endothelial cells with gelatin methacryloyl hydrogels in the center of a melt‐electrospun polycaprolactone tubular scaffolds, which were seeded with human preosteoblasts. The tissue engineered bone (TEB) was subcutaneously implanted into the NSG mice and formed a morphologically and functionally organ bone. Mice were further humanized through the tail vein injection of human cord blood derived CD34+ cells, which then populated in the mouse bone marrow, spleen and humanized TEB (hTEB). 11 weeks after CD34+ transplantation, metastatic breast cancer cells (MDA‐MB‐231BO) were orthotopically injected. Cancer cell injection resulted in the formation of a primary tumor and metastasis to the hTEB and mouse organs. Less frequent metastasis and lower tumor burden were observed in hematochimeric mice, suggesting an immune‐mediated response against the breast cancer cells. Overall, our results demonstrate the efficacy of tissue engineering approaches to study species‐specific cancer‐bone interactions. Further studies using genetically modified hematopoietic stem cells and bioengineered microenvironments will enable us to address the specific roles of signaling molecules regulating hematopoietic niches and cancer metastasis in vivo.
What's new?
The skeletal system is a primary site for breast cancer metastasis but no humanized mouse model can currently faithfully mimic unique niche properties of human bone. Here the authors generated a complex tissue engineered human bone (hTEB) to recapitulate hematopoietic and metastatic features of a physiological human bone. They show that the hTEB attracted hematopoietic and cancer cells in the context of a humanized mouse model. Expression of human cytokines (GM‐CSF, IL‐7 and IL‐15) inhibited tumor growth in the hematochimeric mice, underscoring the potential for the new model to serve as a developmental platform for new therapeutic anti‐cancer agents. |
doi_str_mv | 10.1002/ijc.31528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2025799200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085385183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4148-621d634aebcef499775ad2a745e4c43bbd9ef9e8980c592175d2c0411ba6dd3d3</originalsourceid><addsrcrecordid>eNp10UFPHCEcBXBiNLpVD34BQ-LFHsYFBmaGo9nYdo2Jl3qeMPDflc3AKAya6acv27E9NPFEgF9eXvIQuqDkhhLClnanb0oqWHOAFpTIuiCMikO0yH-kqGlZnaAvMe4IoVQQfoxOmKyEzLcFmtbOJQ84TnEEh1XaOvCjGu3g8ZtV-Dk55e2v-SFF67d4D5cvYdiCt-MQsIa-j1h5gzs7gN9aDxD20HqscBdAxRFr5TUE7AYDfU5IZjpDRxvVRzj_OE_R07e7n6sfxcPj9_Xq9qHQnPKmqBg1VckVdBo2XMq6FsowVXMBXPOy64yEjYRGNkQLyWgtDNOEU9qpypjSlKfoes7NlV8TxLF1Nu47Kw9Dii0jTNRSMkIyvfqP7oYUfG6XVSPKRtCmzOrrrHQYYgywaV-CdSpMLSXtfo8279H-2SPby4_E1Dkw_-TfATJYzuDd9jB9ntSu71dz5G_tSZYD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085385183</pqid></control><display><type>article</type><title>Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shafiee, Abbas ; McGovern, Jacqui A. ; Lahr, Christoph A. ; Meinert, Christoph ; Moi, Davide ; Wagner, Ferdinand ; Landgraf, Marietta ; De‐Juan‐Pardo, Elena ; Mazzieri, Roberta ; Hutmacher, Dietmar W.</creator><creatorcontrib>Shafiee, Abbas ; McGovern, Jacqui A. ; Lahr, Christoph A. ; Meinert, Christoph ; Moi, Davide ; Wagner, Ferdinand ; Landgraf, Marietta ; De‐Juan‐Pardo, Elena ; Mazzieri, Roberta ; Hutmacher, Dietmar W.</creatorcontrib><description>Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, mesenchymal stem/stromal (MSCs), endothelial and hematopoietic cells in an engineered microenvironment. The bone compartment was generated by culturing the human MSCs, umbilical vein endothelial cells with gelatin methacryloyl hydrogels in the center of a melt‐electrospun polycaprolactone tubular scaffolds, which were seeded with human preosteoblasts. The tissue engineered bone (TEB) was subcutaneously implanted into the NSG mice and formed a morphologically and functionally organ bone. Mice were further humanized through the tail vein injection of human cord blood derived CD34+ cells, which then populated in the mouse bone marrow, spleen and humanized TEB (hTEB). 11 weeks after CD34+ transplantation, metastatic breast cancer cells (MDA‐MB‐231BO) were orthotopically injected. Cancer cell injection resulted in the formation of a primary tumor and metastasis to the hTEB and mouse organs. Less frequent metastasis and lower tumor burden were observed in hematochimeric mice, suggesting an immune‐mediated response against the breast cancer cells. Overall, our results demonstrate the efficacy of tissue engineering approaches to study species‐specific cancer‐bone interactions. Further studies using genetically modified hematopoietic stem cells and bioengineered microenvironments will enable us to address the specific roles of signaling molecules regulating hematopoietic niches and cancer metastasis in vivo.
What's new?
The skeletal system is a primary site for breast cancer metastasis but no humanized mouse model can currently faithfully mimic unique niche properties of human bone. Here the authors generated a complex tissue engineered human bone (hTEB) to recapitulate hematopoietic and metastatic features of a physiological human bone. They show that the hTEB attracted hematopoietic and cancer cells in the context of a humanized mouse model. Expression of human cytokines (GM‐CSF, IL‐7 and IL‐15) inhibited tumor growth in the hematochimeric mice, underscoring the potential for the new model to serve as a developmental platform for new therapeutic anti‐cancer agents.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.31528</identifier><identifier>PMID: 29659011</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Animal models ; Animals ; Apoptosis ; Bioengineering ; Biomarkers, Tumor - metabolism ; biomaterial ; Bone cancer ; Bone marrow ; Bone marrow transplantation ; Bone Neoplasms - immunology ; Bone Neoplasms - metabolism ; Bone Neoplasms - secondary ; Bone Neoplasms - therapy ; Breast cancer ; Breast Neoplasms - immunology ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Breast Neoplasms - therapy ; Cancer ; cancer metastasis ; CD34 antigen ; Cell Proliferation ; Cord blood ; Disease Models, Animal ; Endothelial cells ; Female ; Gelatin ; Genetic modification ; Granulocyte-Macrophage Colony-Stimulating Factor - metabolism ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; humanized mouse model ; Humans ; Hydrogels ; Immune system ; Immune System - immunology ; Injection ; Interleukin-15 - metabolism ; Interleukin-7 - metabolism ; Medical research ; melt electrospinning ; Mesenchymal Stem Cell Transplantation ; Mesenchyme ; Metastases ; Metastasis ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Microenvironments ; Niches ; Organs ; Polycaprolactone ; Progenitor cells ; Spleen ; stem cell ; Stem cell transplantation ; Stem cells ; Tissue engineering ; Transplantation ; Tumor Cells, Cultured ; Umbilical vein ; Xenograft Model Antitumor Assays</subject><ispartof>International journal of cancer, 2018-09, Vol.143 (6), p.1470-1482</ispartof><rights>2018 UICC</rights><rights>2018 UICC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4148-621d634aebcef499775ad2a745e4c43bbd9ef9e8980c592175d2c0411ba6dd3d3</citedby><cites>FETCH-LOGICAL-c4148-621d634aebcef499775ad2a745e4c43bbd9ef9e8980c592175d2c0411ba6dd3d3</cites><orcidid>0000-0002-8885-9025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.31528$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.31528$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29659011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shafiee, Abbas</creatorcontrib><creatorcontrib>McGovern, Jacqui A.</creatorcontrib><creatorcontrib>Lahr, Christoph A.</creatorcontrib><creatorcontrib>Meinert, Christoph</creatorcontrib><creatorcontrib>Moi, Davide</creatorcontrib><creatorcontrib>Wagner, Ferdinand</creatorcontrib><creatorcontrib>Landgraf, Marietta</creatorcontrib><creatorcontrib>De‐Juan‐Pardo, Elena</creatorcontrib><creatorcontrib>Mazzieri, Roberta</creatorcontrib><creatorcontrib>Hutmacher, Dietmar W.</creatorcontrib><title>Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, mesenchymal stem/stromal (MSCs), endothelial and hematopoietic cells in an engineered microenvironment. The bone compartment was generated by culturing the human MSCs, umbilical vein endothelial cells with gelatin methacryloyl hydrogels in the center of a melt‐electrospun polycaprolactone tubular scaffolds, which were seeded with human preosteoblasts. The tissue engineered bone (TEB) was subcutaneously implanted into the NSG mice and formed a morphologically and functionally organ bone. Mice were further humanized through the tail vein injection of human cord blood derived CD34+ cells, which then populated in the mouse bone marrow, spleen and humanized TEB (hTEB). 11 weeks after CD34+ transplantation, metastatic breast cancer cells (MDA‐MB‐231BO) were orthotopically injected. Cancer cell injection resulted in the formation of a primary tumor and metastasis to the hTEB and mouse organs. Less frequent metastasis and lower tumor burden were observed in hematochimeric mice, suggesting an immune‐mediated response against the breast cancer cells. Overall, our results demonstrate the efficacy of tissue engineering approaches to study species‐specific cancer‐bone interactions. Further studies using genetically modified hematopoietic stem cells and bioengineered microenvironments will enable us to address the specific roles of signaling molecules regulating hematopoietic niches and cancer metastasis in vivo.
What's new?
The skeletal system is a primary site for breast cancer metastasis but no humanized mouse model can currently faithfully mimic unique niche properties of human bone. Here the authors generated a complex tissue engineered human bone (hTEB) to recapitulate hematopoietic and metastatic features of a physiological human bone. They show that the hTEB attracted hematopoietic and cancer cells in the context of a humanized mouse model. Expression of human cytokines (GM‐CSF, IL‐7 and IL‐15) inhibited tumor growth in the hematochimeric mice, underscoring the potential for the new model to serve as a developmental platform for new therapeutic anti‐cancer agents.</description><subject>3D printing</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Bioengineering</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>biomaterial</subject><subject>Bone cancer</subject><subject>Bone marrow</subject><subject>Bone marrow transplantation</subject><subject>Bone Neoplasms - immunology</subject><subject>Bone Neoplasms - metabolism</subject><subject>Bone Neoplasms - secondary</subject><subject>Bone Neoplasms - therapy</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - immunology</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Breast Neoplasms - therapy</subject><subject>Cancer</subject><subject>cancer metastasis</subject><subject>CD34 antigen</subject><subject>Cell Proliferation</subject><subject>Cord blood</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Female</subject><subject>Gelatin</subject><subject>Genetic modification</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>humanized mouse model</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Immune system</subject><subject>Immune System - immunology</subject><subject>Injection</subject><subject>Interleukin-15 - metabolism</subject><subject>Interleukin-7 - metabolism</subject><subject>Medical research</subject><subject>melt electrospinning</subject><subject>Mesenchymal Stem Cell Transplantation</subject><subject>Mesenchyme</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Microenvironments</subject><subject>Niches</subject><subject>Organs</subject><subject>Polycaprolactone</subject><subject>Progenitor cells</subject><subject>Spleen</subject><subject>stem cell</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Transplantation</subject><subject>Tumor Cells, Cultured</subject><subject>Umbilical vein</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10UFPHCEcBXBiNLpVD34BQ-LFHsYFBmaGo9nYdo2Jl3qeMPDflc3AKAya6acv27E9NPFEgF9eXvIQuqDkhhLClnanb0oqWHOAFpTIuiCMikO0yH-kqGlZnaAvMe4IoVQQfoxOmKyEzLcFmtbOJQ84TnEEh1XaOvCjGu3g8ZtV-Dk55e2v-SFF67d4D5cvYdiCt-MQsIa-j1h5gzs7gN9aDxD20HqscBdAxRFr5TUE7AYDfU5IZjpDRxvVRzj_OE_R07e7n6sfxcPj9_Xq9qHQnPKmqBg1VckVdBo2XMq6FsowVXMBXPOy64yEjYRGNkQLyWgtDNOEU9qpypjSlKfoes7NlV8TxLF1Nu47Kw9Dii0jTNRSMkIyvfqP7oYUfG6XVSPKRtCmzOrrrHQYYgywaV-CdSpMLSXtfo8279H-2SPby4_E1Dkw_-TfATJYzuDd9jB9ntSu71dz5G_tSZYD</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Shafiee, Abbas</creator><creator>McGovern, Jacqui A.</creator><creator>Lahr, Christoph A.</creator><creator>Meinert, Christoph</creator><creator>Moi, Davide</creator><creator>Wagner, Ferdinand</creator><creator>Landgraf, Marietta</creator><creator>De‐Juan‐Pardo, Elena</creator><creator>Mazzieri, Roberta</creator><creator>Hutmacher, Dietmar W.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8885-9025</orcidid></search><sort><creationdate>20180915</creationdate><title>Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study</title><author>Shafiee, Abbas ; McGovern, Jacqui A. ; Lahr, Christoph A. ; Meinert, Christoph ; Moi, Davide ; Wagner, Ferdinand ; Landgraf, Marietta ; De‐Juan‐Pardo, Elena ; Mazzieri, Roberta ; Hutmacher, Dietmar W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4148-621d634aebcef499775ad2a745e4c43bbd9ef9e8980c592175d2c0411ba6dd3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Bioengineering</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>biomaterial</topic><topic>Bone cancer</topic><topic>Bone marrow</topic><topic>Bone marrow transplantation</topic><topic>Bone Neoplasms - immunology</topic><topic>Bone Neoplasms - metabolism</topic><topic>Bone Neoplasms - secondary</topic><topic>Bone Neoplasms - therapy</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - immunology</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Breast Neoplasms - therapy</topic><topic>Cancer</topic><topic>cancer metastasis</topic><topic>CD34 antigen</topic><topic>Cell Proliferation</topic><topic>Cord blood</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Female</topic><topic>Gelatin</topic><topic>Genetic modification</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>humanized mouse model</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Immune system</topic><topic>Immune System - immunology</topic><topic>Injection</topic><topic>Interleukin-15 - metabolism</topic><topic>Interleukin-7 - metabolism</topic><topic>Medical research</topic><topic>melt electrospinning</topic><topic>Mesenchymal Stem Cell Transplantation</topic><topic>Mesenchyme</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Microenvironments</topic><topic>Niches</topic><topic>Organs</topic><topic>Polycaprolactone</topic><topic>Progenitor cells</topic><topic>Spleen</topic><topic>stem cell</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Transplantation</topic><topic>Tumor Cells, Cultured</topic><topic>Umbilical vein</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafiee, Abbas</creatorcontrib><creatorcontrib>McGovern, Jacqui A.</creatorcontrib><creatorcontrib>Lahr, Christoph A.</creatorcontrib><creatorcontrib>Meinert, Christoph</creatorcontrib><creatorcontrib>Moi, Davide</creatorcontrib><creatorcontrib>Wagner, Ferdinand</creatorcontrib><creatorcontrib>Landgraf, Marietta</creatorcontrib><creatorcontrib>De‐Juan‐Pardo, Elena</creatorcontrib><creatorcontrib>Mazzieri, Roberta</creatorcontrib><creatorcontrib>Hutmacher, Dietmar W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafiee, Abbas</au><au>McGovern, Jacqui A.</au><au>Lahr, Christoph A.</au><au>Meinert, Christoph</au><au>Moi, Davide</au><au>Wagner, Ferdinand</au><au>Landgraf, Marietta</au><au>De‐Juan‐Pardo, Elena</au><au>Mazzieri, Roberta</au><au>Hutmacher, Dietmar W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2018-09-15</date><risdate>2018</risdate><volume>143</volume><issue>6</issue><spage>1470</spage><epage>1482</epage><pages>1470-1482</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><abstract>Despite significant advances, most current in vivo models fail to fully recapitulate the biological processes that occur in humans. Here we aimed to develop an advanced humanized model with features of an organ bone by providing different bone tissue cellular compartments including preosteoblasts, mesenchymal stem/stromal (MSCs), endothelial and hematopoietic cells in an engineered microenvironment. The bone compartment was generated by culturing the human MSCs, umbilical vein endothelial cells with gelatin methacryloyl hydrogels in the center of a melt‐electrospun polycaprolactone tubular scaffolds, which were seeded with human preosteoblasts. The tissue engineered bone (TEB) was subcutaneously implanted into the NSG mice and formed a morphologically and functionally organ bone. Mice were further humanized through the tail vein injection of human cord blood derived CD34+ cells, which then populated in the mouse bone marrow, spleen and humanized TEB (hTEB). 11 weeks after CD34+ transplantation, metastatic breast cancer cells (MDA‐MB‐231BO) were orthotopically injected. Cancer cell injection resulted in the formation of a primary tumor and metastasis to the hTEB and mouse organs. Less frequent metastasis and lower tumor burden were observed in hematochimeric mice, suggesting an immune‐mediated response against the breast cancer cells. Overall, our results demonstrate the efficacy of tissue engineering approaches to study species‐specific cancer‐bone interactions. Further studies using genetically modified hematopoietic stem cells and bioengineered microenvironments will enable us to address the specific roles of signaling molecules regulating hematopoietic niches and cancer metastasis in vivo.
What's new?
The skeletal system is a primary site for breast cancer metastasis but no humanized mouse model can currently faithfully mimic unique niche properties of human bone. Here the authors generated a complex tissue engineered human bone (hTEB) to recapitulate hematopoietic and metastatic features of a physiological human bone. They show that the hTEB attracted hematopoietic and cancer cells in the context of a humanized mouse model. Expression of human cytokines (GM‐CSF, IL‐7 and IL‐15) inhibited tumor growth in the hematochimeric mice, underscoring the potential for the new model to serve as a developmental platform for new therapeutic anti‐cancer agents.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29659011</pmid><doi>10.1002/ijc.31528</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8885-9025</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7136 |
ispartof | International journal of cancer, 2018-09, Vol.143 (6), p.1470-1482 |
issn | 0020-7136 1097-0215 |
language | eng |
recordid | cdi_proquest_miscellaneous_2025799200 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 3D printing Animal models Animals Apoptosis Bioengineering Biomarkers, Tumor - metabolism biomaterial Bone cancer Bone marrow Bone marrow transplantation Bone Neoplasms - immunology Bone Neoplasms - metabolism Bone Neoplasms - secondary Bone Neoplasms - therapy Breast cancer Breast Neoplasms - immunology Breast Neoplasms - metabolism Breast Neoplasms - pathology Breast Neoplasms - therapy Cancer cancer metastasis CD34 antigen Cell Proliferation Cord blood Disease Models, Animal Endothelial cells Female Gelatin Genetic modification Granulocyte-Macrophage Colony-Stimulating Factor - metabolism Hematopoietic stem cells Hematopoietic Stem Cells - cytology humanized mouse model Humans Hydrogels Immune system Immune System - immunology Injection Interleukin-15 - metabolism Interleukin-7 - metabolism Medical research melt electrospinning Mesenchymal Stem Cell Transplantation Mesenchyme Metastases Metastasis Mice Mice, Inbred NOD Mice, SCID Microenvironments Niches Organs Polycaprolactone Progenitor cells Spleen stem cell Stem cell transplantation Stem cells Tissue engineering Transplantation Tumor Cells, Cultured Umbilical vein Xenograft Model Antitumor Assays |
title | Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immune%20system%20augmentation%20via%20humanization%20using%20stem/progenitor%20cells%20and%20bioengineering%20in%20a%20breast%20cancer%20model%20study&rft.jtitle=International%20journal%20of%20cancer&rft.au=Shafiee,%20Abbas&rft.date=2018-09-15&rft.volume=143&rft.issue=6&rft.spage=1470&rft.epage=1482&rft.pages=1470-1482&rft.issn=0020-7136&rft.eissn=1097-0215&rft_id=info:doi/10.1002/ijc.31528&rft_dat=%3Cproquest_cross%3E2085385183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085385183&rft_id=info:pmid/29659011&rfr_iscdi=true |