A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity

New Findings What is the central question of this study? What are the initial metabolic and molecular events that underpin bed rest‐induced skeletal muscle deconditioning, and what is the contribution of energy balance? What is the main finding and its importance? A single day of bed rest, irrespect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental physiology 2018-06, Vol.103 (6), p.860-875
Hauptverfasser: Dirks, Marlou L., Stephens, Francis B., Jackman, Sarah R., Galera Gordo, Jesús, Machin, David J., Pulsford, Richard M., Loon, Luc J. C., Wall, Benjamin T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 6
container_start_page 860
container_title Experimental physiology
container_volume 103
creator Dirks, Marlou L.
Stephens, Francis B.
Jackman, Sarah R.
Galera Gordo, Jesús
Machin, David J.
Pulsford, Richard M.
Loon, Luc J. C.
Wall, Benjamin T.
description New Findings What is the central question of this study? What are the initial metabolic and molecular events that underpin bed rest‐induced skeletal muscle deconditioning, and what is the contribution of energy balance? What is the main finding and its importance? A single day of bed rest, irrespective of energy balance, did not lead to overt changes in skeletal muscle gene expression or insulin sensitivity. More than 1 day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance. The initial metabolic and molecular events that underpin disuse‐induced skeletal muscle deconditioning, and the contribution of energy balance, remain to be investigated. Ten young, healthy men (age 25 ± 1 years; body mass index 25.3 ± 0.8 kg·m−2) underwent three 24 h laboratory‐based experimental periods in a randomized, crossover manner: (i) controlled habitual physical activity with an energy‐balanced diet (CON); (ii) strict bed rest with a diet to maintain energy balance (BR‐B); and (iii) strict bed rest with a diet identical to CON, consequently resulting in positive energy balance. Continuous glucose monitoring was performed throughout each visit, with vastus lateralis muscle biopsies and an oral glucose tolerance test performed before and after. In parallel with muscle samples collected from a previous 7 day bed rest study, biopsies were used to examine the expression of genes associated with the regulation of muscle mass and insulin sensitivity. A single day of bed rest, irrespective of energy balance, did not lead to overt changes in whole‐body substrate oxidation, indices of insulin sensitivity [i.e. homeostatic model assessment of insulin resistance, BR‐B from 2.7 ± 1.7 to 3.1 ± 1.5 (P > 0.05) and Matsuda index, BR‐B from 5.9 ± 3.3 to 5.2 ± 2.9 (P > 0.05)] or 24 h glycaemic control/variability compared with CON. Seven days of bed rest led to ∼30–55% lower expression of genes involved in insulin signalling, lipid storage/oxidation and muscle protein breakdown, whereas no such changes were observed after 1 day of bed rest. In conclusion, more than a single day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance.
doi_str_mv 10.1113/EP086961
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2025798845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047979525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3840-3ac3753fff4d4d228ece5f2db1487eadb69d0251a2559eff931b8589ee4f767c3</originalsourceid><addsrcrecordid>eNp1kUFLHDEYhkNRdKtCf0EJeOnB0WSSzCRHWawWBD0oeBsyyZcldjbZJjO2c-tPN4tuC4Wevg_yfA95eRH6RMk5pZRdXN0T2aiGfkALyhtVcS6e9tCCKCEr0rTkEH3M-ZkQyojkB-iwVo1ohOAL9PsSZx9WA2CrZxwd7sHiBHk8wz6VuQEz-hfYvkCAtJpxrwcdDJxhGyHjEEesnSsUzt9hgFEPeD1lU4SrcoDh16ZYso8Bx4R9yNPgA84Qsi9eP87HaN_pIcPJ-zxCj1-vHpY31e3d9bfl5W1lmOSkYtqwVjDnHLfc1rUEA8LVtqdctqBt3yhLakF1LYQC5xSjvRRSAXDXNq1hR-jLm3eT4o-pBOzWPhsYShiIU-7qct0qKbko6Ok_6HOcUii_KxRvVatELf4KTYo5J3DdJvm1TnNHSbdtpdu1UtDP78KpX4P9A-5qKMD5G_DTDzD_V1SWG1qyE_YK-oyWDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047979525</pqid></control><display><type>article</type><title>A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Dirks, Marlou L. ; Stephens, Francis B. ; Jackman, Sarah R. ; Galera Gordo, Jesús ; Machin, David J. ; Pulsford, Richard M. ; Loon, Luc J. C. ; Wall, Benjamin T.</creator><creatorcontrib>Dirks, Marlou L. ; Stephens, Francis B. ; Jackman, Sarah R. ; Galera Gordo, Jesús ; Machin, David J. ; Pulsford, Richard M. ; Loon, Luc J. C. ; Wall, Benjamin T.</creatorcontrib><description>New Findings What is the central question of this study? What are the initial metabolic and molecular events that underpin bed rest‐induced skeletal muscle deconditioning, and what is the contribution of energy balance? What is the main finding and its importance? A single day of bed rest, irrespective of energy balance, did not lead to overt changes in skeletal muscle gene expression or insulin sensitivity. More than 1 day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance. The initial metabolic and molecular events that underpin disuse‐induced skeletal muscle deconditioning, and the contribution of energy balance, remain to be investigated. Ten young, healthy men (age 25 ± 1 years; body mass index 25.3 ± 0.8 kg·m−2) underwent three 24 h laboratory‐based experimental periods in a randomized, crossover manner: (i) controlled habitual physical activity with an energy‐balanced diet (CON); (ii) strict bed rest with a diet to maintain energy balance (BR‐B); and (iii) strict bed rest with a diet identical to CON, consequently resulting in positive energy balance. Continuous glucose monitoring was performed throughout each visit, with vastus lateralis muscle biopsies and an oral glucose tolerance test performed before and after. In parallel with muscle samples collected from a previous 7 day bed rest study, biopsies were used to examine the expression of genes associated with the regulation of muscle mass and insulin sensitivity. A single day of bed rest, irrespective of energy balance, did not lead to overt changes in whole‐body substrate oxidation, indices of insulin sensitivity [i.e. homeostatic model assessment of insulin resistance, BR‐B from 2.7 ± 1.7 to 3.1 ± 1.5 (P &gt; 0.05) and Matsuda index, BR‐B from 5.9 ± 3.3 to 5.2 ± 2.9 (P &gt; 0.05)] or 24 h glycaemic control/variability compared with CON. Seven days of bed rest led to ∼30–55% lower expression of genes involved in insulin signalling, lipid storage/oxidation and muscle protein breakdown, whereas no such changes were observed after 1 day of bed rest. In conclusion, more than a single day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance.</description><identifier>ISSN: 0958-0670</identifier><identifier>EISSN: 1469-445X</identifier><identifier>DOI: 10.1113/EP086961</identifier><identifier>PMID: 29656554</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Biopsy ; Body mass index ; Diet ; disuse ; Energy ; Energy balance ; Gene expression ; Gene regulation ; Glucose ; Glucose monitoring ; Glucose tolerance ; Immobilization ; Insulin ; Insulin resistance ; Musculoskeletal system ; nutrition ; Oxidation ; Physical activity ; Skeletal muscle ; Transcription ; transcriptional response</subject><ispartof>Experimental physiology, 2018-06, Vol.103 (6), p.860-875</ispartof><rights>2018 The Authors. Experimental Physiology © 2018 The Physiological Society</rights><rights>2018 The Authors. Experimental Physiology © 2018 The Physiological Society.</rights><rights>2018 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3840-3ac3753fff4d4d228ece5f2db1487eadb69d0251a2559eff931b8589ee4f767c3</citedby><cites>FETCH-LOGICAL-c3840-3ac3753fff4d4d228ece5f2db1487eadb69d0251a2559eff931b8589ee4f767c3</cites><orcidid>0000-0002-9189-1042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1113%2FEP086961$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1113%2FEP086961$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29656554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dirks, Marlou L.</creatorcontrib><creatorcontrib>Stephens, Francis B.</creatorcontrib><creatorcontrib>Jackman, Sarah R.</creatorcontrib><creatorcontrib>Galera Gordo, Jesús</creatorcontrib><creatorcontrib>Machin, David J.</creatorcontrib><creatorcontrib>Pulsford, Richard M.</creatorcontrib><creatorcontrib>Loon, Luc J. C.</creatorcontrib><creatorcontrib>Wall, Benjamin T.</creatorcontrib><title>A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity</title><title>Experimental physiology</title><addtitle>Exp Physiol</addtitle><description>New Findings What is the central question of this study? What are the initial metabolic and molecular events that underpin bed rest‐induced skeletal muscle deconditioning, and what is the contribution of energy balance? What is the main finding and its importance? A single day of bed rest, irrespective of energy balance, did not lead to overt changes in skeletal muscle gene expression or insulin sensitivity. More than 1 day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance. The initial metabolic and molecular events that underpin disuse‐induced skeletal muscle deconditioning, and the contribution of energy balance, remain to be investigated. Ten young, healthy men (age 25 ± 1 years; body mass index 25.3 ± 0.8 kg·m−2) underwent three 24 h laboratory‐based experimental periods in a randomized, crossover manner: (i) controlled habitual physical activity with an energy‐balanced diet (CON); (ii) strict bed rest with a diet to maintain energy balance (BR‐B); and (iii) strict bed rest with a diet identical to CON, consequently resulting in positive energy balance. Continuous glucose monitoring was performed throughout each visit, with vastus lateralis muscle biopsies and an oral glucose tolerance test performed before and after. In parallel with muscle samples collected from a previous 7 day bed rest study, biopsies were used to examine the expression of genes associated with the regulation of muscle mass and insulin sensitivity. A single day of bed rest, irrespective of energy balance, did not lead to overt changes in whole‐body substrate oxidation, indices of insulin sensitivity [i.e. homeostatic model assessment of insulin resistance, BR‐B from 2.7 ± 1.7 to 3.1 ± 1.5 (P &gt; 0.05) and Matsuda index, BR‐B from 5.9 ± 3.3 to 5.2 ± 2.9 (P &gt; 0.05)] or 24 h glycaemic control/variability compared with CON. Seven days of bed rest led to ∼30–55% lower expression of genes involved in insulin signalling, lipid storage/oxidation and muscle protein breakdown, whereas no such changes were observed after 1 day of bed rest. In conclusion, more than a single day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance.</description><subject>Biopsy</subject><subject>Body mass index</subject><subject>Diet</subject><subject>disuse</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Glucose</subject><subject>Glucose monitoring</subject><subject>Glucose tolerance</subject><subject>Immobilization</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Musculoskeletal system</subject><subject>nutrition</subject><subject>Oxidation</subject><subject>Physical activity</subject><subject>Skeletal muscle</subject><subject>Transcription</subject><subject>transcriptional response</subject><issn>0958-0670</issn><issn>1469-445X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFLHDEYhkNRdKtCf0EJeOnB0WSSzCRHWawWBD0oeBsyyZcldjbZJjO2c-tPN4tuC4Wevg_yfA95eRH6RMk5pZRdXN0T2aiGfkALyhtVcS6e9tCCKCEr0rTkEH3M-ZkQyojkB-iwVo1ohOAL9PsSZx9WA2CrZxwd7sHiBHk8wz6VuQEz-hfYvkCAtJpxrwcdDJxhGyHjEEesnSsUzt9hgFEPeD1lU4SrcoDh16ZYso8Bx4R9yNPgA84Qsi9eP87HaN_pIcPJ-zxCj1-vHpY31e3d9bfl5W1lmOSkYtqwVjDnHLfc1rUEA8LVtqdctqBt3yhLakF1LYQC5xSjvRRSAXDXNq1hR-jLm3eT4o-pBOzWPhsYShiIU-7qct0qKbko6Ok_6HOcUii_KxRvVatELf4KTYo5J3DdJvm1TnNHSbdtpdu1UtDP78KpX4P9A-5qKMD5G_DTDzD_V1SWG1qyE_YK-oyWDQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Dirks, Marlou L.</creator><creator>Stephens, Francis B.</creator><creator>Jackman, Sarah R.</creator><creator>Galera Gordo, Jesús</creator><creator>Machin, David J.</creator><creator>Pulsford, Richard M.</creator><creator>Loon, Luc J. C.</creator><creator>Wall, Benjamin T.</creator><general>John Wiley &amp; Sons, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9189-1042</orcidid></search><sort><creationdate>20180601</creationdate><title>A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity</title><author>Dirks, Marlou L. ; Stephens, Francis B. ; Jackman, Sarah R. ; Galera Gordo, Jesús ; Machin, David J. ; Pulsford, Richard M. ; Loon, Luc J. C. ; Wall, Benjamin T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3840-3ac3753fff4d4d228ece5f2db1487eadb69d0251a2559eff931b8589ee4f767c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biopsy</topic><topic>Body mass index</topic><topic>Diet</topic><topic>disuse</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Glucose</topic><topic>Glucose monitoring</topic><topic>Glucose tolerance</topic><topic>Immobilization</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Musculoskeletal system</topic><topic>nutrition</topic><topic>Oxidation</topic><topic>Physical activity</topic><topic>Skeletal muscle</topic><topic>Transcription</topic><topic>transcriptional response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dirks, Marlou L.</creatorcontrib><creatorcontrib>Stephens, Francis B.</creatorcontrib><creatorcontrib>Jackman, Sarah R.</creatorcontrib><creatorcontrib>Galera Gordo, Jesús</creatorcontrib><creatorcontrib>Machin, David J.</creatorcontrib><creatorcontrib>Pulsford, Richard M.</creatorcontrib><creatorcontrib>Loon, Luc J. C.</creatorcontrib><creatorcontrib>Wall, Benjamin T.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dirks, Marlou L.</au><au>Stephens, Francis B.</au><au>Jackman, Sarah R.</au><au>Galera Gordo, Jesús</au><au>Machin, David J.</au><au>Pulsford, Richard M.</au><au>Loon, Luc J. C.</au><au>Wall, Benjamin T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity</atitle><jtitle>Experimental physiology</jtitle><addtitle>Exp Physiol</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>103</volume><issue>6</issue><spage>860</spage><epage>875</epage><pages>860-875</pages><issn>0958-0670</issn><eissn>1469-445X</eissn><abstract>New Findings What is the central question of this study? What are the initial metabolic and molecular events that underpin bed rest‐induced skeletal muscle deconditioning, and what is the contribution of energy balance? What is the main finding and its importance? A single day of bed rest, irrespective of energy balance, did not lead to overt changes in skeletal muscle gene expression or insulin sensitivity. More than 1 day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance. The initial metabolic and molecular events that underpin disuse‐induced skeletal muscle deconditioning, and the contribution of energy balance, remain to be investigated. Ten young, healthy men (age 25 ± 1 years; body mass index 25.3 ± 0.8 kg·m−2) underwent three 24 h laboratory‐based experimental periods in a randomized, crossover manner: (i) controlled habitual physical activity with an energy‐balanced diet (CON); (ii) strict bed rest with a diet to maintain energy balance (BR‐B); and (iii) strict bed rest with a diet identical to CON, consequently resulting in positive energy balance. Continuous glucose monitoring was performed throughout each visit, with vastus lateralis muscle biopsies and an oral glucose tolerance test performed before and after. In parallel with muscle samples collected from a previous 7 day bed rest study, biopsies were used to examine the expression of genes associated with the regulation of muscle mass and insulin sensitivity. A single day of bed rest, irrespective of energy balance, did not lead to overt changes in whole‐body substrate oxidation, indices of insulin sensitivity [i.e. homeostatic model assessment of insulin resistance, BR‐B from 2.7 ± 1.7 to 3.1 ± 1.5 (P &gt; 0.05) and Matsuda index, BR‐B from 5.9 ± 3.3 to 5.2 ± 2.9 (P &gt; 0.05)] or 24 h glycaemic control/variability compared with CON. Seven days of bed rest led to ∼30–55% lower expression of genes involved in insulin signalling, lipid storage/oxidation and muscle protein breakdown, whereas no such changes were observed after 1 day of bed rest. In conclusion, more than a single day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29656554</pmid><doi>10.1113/EP086961</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9189-1042</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0958-0670
ispartof Experimental physiology, 2018-06, Vol.103 (6), p.860-875
issn 0958-0670
1469-445X
language eng
recordid cdi_proquest_miscellaneous_2025798845
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Biopsy
Body mass index
Diet
disuse
Energy
Energy balance
Gene expression
Gene regulation
Glucose
Glucose monitoring
Glucose tolerance
Immobilization
Insulin
Insulin resistance
Musculoskeletal system
nutrition
Oxidation
Physical activity
Skeletal muscle
Transcription
transcriptional response
title A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single%20day%20of%20bed%20rest,%20irrespective%20of%20energy%20balance,%20does%20not%20affect%20skeletal%20muscle%20gene%20expression%20or%20insulin%20sensitivity&rft.jtitle=Experimental%20physiology&rft.au=Dirks,%20Marlou%20L.&rft.date=2018-06-01&rft.volume=103&rft.issue=6&rft.spage=860&rft.epage=875&rft.pages=860-875&rft.issn=0958-0670&rft.eissn=1469-445X&rft_id=info:doi/10.1113/EP086961&rft_dat=%3Cproquest_cross%3E2047979525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047979525&rft_id=info:pmid/29656554&rfr_iscdi=true