An orally available, brain-penetrant CAMKK2 inhibitor reduces food intake in rodent model
[Display omitted] Hypothalamic CAMKK2 represents a potential mechanism for chemically affecting satiety and promoting weight loss in clinically obese patients. Single-digit nanomolar inhibitors of CAMKK2 were identified in three related ATP-competitive series. Limited optimization of kinase selectiv...
Gespeichert in:
Veröffentlicht in: | Bioorg. Med. Chem. Lett 2018-06, Vol.28 (10), p.1958-1963 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Hypothalamic CAMKK2 represents a potential mechanism for chemically affecting satiety and promoting weight loss in clinically obese patients. Single-digit nanomolar inhibitors of CAMKK2 were identified in three related ATP-competitive series. Limited optimization of kinase selectivity, solubility, and pharmacokinetic properties were undertaken on all three series, as SAR was often transferrable. Ultimately, a 2,4-diaryl 7-azaindole was optimized to afford a tool molecule that potently inhibits AMPK phosphorylation in a hypothalamus-derived cell line, is orally bioavailable, and crosses the blood–brain barrier. When dosed orally in rodents, compound 4 t limited ghrelin-induced food intake. |
---|---|
ISSN: | 0960-894X 1464-3405 |
DOI: | 10.1016/j.bmcl.2018.03.034 |