A recipe for nanoporous graphene

Nanoporous graphene created from molecular precursors shows promise for electronic applications Graphene is widely regarded as a promising material for electronic applications because the exceptionally high mobilities of its charge carriers enable extremely fast transistors ( 1 ). However, the lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-04, Vol.360 (6385), p.154-155
1. Verfasser: Sinitskii, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 6385
container_start_page 154
container_title Science (American Association for the Advancement of Science)
container_volume 360
creator Sinitskii, Alexander
description Nanoporous graphene created from molecular precursors shows promise for electronic applications Graphene is widely regarded as a promising material for electronic applications because the exceptionally high mobilities of its charge carriers enable extremely fast transistors ( 1 ). However, the lack of an energy band gap in graphene limits its use in logic applications; without a band gap, the devices remain highly conductive at any gate voltage and thus cannot be fully switched off. Researchers have therefore turned their attention to semiconducting forms of graphene that have the necessary band gap to enable transistors with high on-off ratios. On page 199 of this issue, Moreno et al. ( 2 ) report on the synthesis and device characterization of nanoporous graphene with semiconducting properties.
doi_str_mv 10.1126/science.aat5117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2025314032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2024518736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-29b0bb98f8a5060f69357689fb842b91fb777393fd5003d6fb6885d824838dc93</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EoqUws6FILCxpr-34NVZVeUiVWGC2bMeGVG0S7Gbg3-OqgYHpDvc7R0cfQrcY5hgTvkiu8a3zc2MODGNxhqYYFCsVAXqOpgCUlxIEm6CrlLYA-afoJZoQxRlwDlNULIvoXdP7InSxaE3b9V3shlR8RNN_-tZfo4tgdsnfjHeG3h_Xb6vncvP69LJabkpHKjiURFmwVskgTW6GwBVlgksVrKyIVThYIQRVNNQsr6p5sFxKVktSSSprp-gMPZx6-9h9DT4d9L5Jzu92pvV5jyZAGMUVUJLR-3_othtim9cdqYphKSjP1OJEudilFH3QfWz2Jn5rDPooT4_y9CgvJ-7G3sHuff3H_9qiP-DgaYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024518736</pqid></control><display><type>article</type><title>A recipe for nanoporous graphene</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Sinitskii, Alexander</creator><creatorcontrib>Sinitskii, Alexander</creatorcontrib><description>Nanoporous graphene created from molecular precursors shows promise for electronic applications Graphene is widely regarded as a promising material for electronic applications because the exceptionally high mobilities of its charge carriers enable extremely fast transistors ( 1 ). However, the lack of an energy band gap in graphene limits its use in logic applications; without a band gap, the devices remain highly conductive at any gate voltage and thus cannot be fully switched off. Researchers have therefore turned their attention to semiconducting forms of graphene that have the necessary band gap to enable transistors with high on-off ratios. On page 199 of this issue, Moreno et al. ( 2 ) report on the synthesis and device characterization of nanoporous graphene with semiconducting properties.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aat5117</identifier><identifier>PMID: 29650660</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Band gap ; Current carriers ; Energy gap ; Graphene ; Nanotubes ; Semiconductor devices ; Transistors</subject><ispartof>Science (American Association for the Advancement of Science), 2018-04, Vol.360 (6385), p.154-155</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c240t-29b0bb98f8a5060f69357689fb842b91fb777393fd5003d6fb6885d824838dc93</citedby><cites>FETCH-LOGICAL-c240t-29b0bb98f8a5060f69357689fb842b91fb777393fd5003d6fb6885d824838dc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2882,2883,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29650660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinitskii, Alexander</creatorcontrib><title>A recipe for nanoporous graphene</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Nanoporous graphene created from molecular precursors shows promise for electronic applications Graphene is widely regarded as a promising material for electronic applications because the exceptionally high mobilities of its charge carriers enable extremely fast transistors ( 1 ). However, the lack of an energy band gap in graphene limits its use in logic applications; without a band gap, the devices remain highly conductive at any gate voltage and thus cannot be fully switched off. Researchers have therefore turned their attention to semiconducting forms of graphene that have the necessary band gap to enable transistors with high on-off ratios. On page 199 of this issue, Moreno et al. ( 2 ) report on the synthesis and device characterization of nanoporous graphene with semiconducting properties.</description><subject>Band gap</subject><subject>Current carriers</subject><subject>Energy gap</subject><subject>Graphene</subject><subject>Nanotubes</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EoqUws6FILCxpr-34NVZVeUiVWGC2bMeGVG0S7Gbg3-OqgYHpDvc7R0cfQrcY5hgTvkiu8a3zc2MODGNxhqYYFCsVAXqOpgCUlxIEm6CrlLYA-afoJZoQxRlwDlNULIvoXdP7InSxaE3b9V3shlR8RNN_-tZfo4tgdsnfjHeG3h_Xb6vncvP69LJabkpHKjiURFmwVskgTW6GwBVlgksVrKyIVThYIQRVNNQsr6p5sFxKVktSSSprp-gMPZx6-9h9DT4d9L5Jzu92pvV5jyZAGMUVUJLR-3_othtim9cdqYphKSjP1OJEudilFH3QfWz2Jn5rDPooT4_y9CgvJ-7G3sHuff3H_9qiP-DgaYY</recordid><startdate>20180413</startdate><enddate>20180413</enddate><creator>Sinitskii, Alexander</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20180413</creationdate><title>A recipe for nanoporous graphene</title><author>Sinitskii, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-29b0bb98f8a5060f69357689fb842b91fb777393fd5003d6fb6885d824838dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Band gap</topic><topic>Current carriers</topic><topic>Energy gap</topic><topic>Graphene</topic><topic>Nanotubes</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinitskii, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinitskii, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A recipe for nanoporous graphene</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-04-13</date><risdate>2018</risdate><volume>360</volume><issue>6385</issue><spage>154</spage><epage>155</epage><pages>154-155</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Nanoporous graphene created from molecular precursors shows promise for electronic applications Graphene is widely regarded as a promising material for electronic applications because the exceptionally high mobilities of its charge carriers enable extremely fast transistors ( 1 ). However, the lack of an energy band gap in graphene limits its use in logic applications; without a band gap, the devices remain highly conductive at any gate voltage and thus cannot be fully switched off. Researchers have therefore turned their attention to semiconducting forms of graphene that have the necessary band gap to enable transistors with high on-off ratios. On page 199 of this issue, Moreno et al. ( 2 ) report on the synthesis and device characterization of nanoporous graphene with semiconducting properties.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>29650660</pmid><doi>10.1126/science.aat5117</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-04, Vol.360 (6385), p.154-155
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2025314032
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Band gap
Current carriers
Energy gap
Graphene
Nanotubes
Semiconductor devices
Transistors
title A recipe for nanoporous graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20recipe%20for%20nanoporous%20graphene&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sinitskii,%20Alexander&rft.date=2018-04-13&rft.volume=360&rft.issue=6385&rft.spage=154&rft.epage=155&rft.pages=154-155&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aat5117&rft_dat=%3Cproquest_cross%3E2024518736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024518736&rft_id=info:pmid/29650660&rfr_iscdi=true