A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions
[Display omitted] Physiological oxygen levels within the tissue microenvironment are usually lower than 14%, in stem cell niches these levels can be as low as 0–1%. In cell cultures, such low oxygen levels are usually mimicked by altering the global culture environment either by O2 removal (vacuum o...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2018-06, Vol.73, p.167-179 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | |
container_start_page | 167 |
container_title | Acta biomaterialia |
container_volume | 73 |
creator | Barmaki, Samineh Jokinen, Ville Obermaier, Daniela Blokhina, Daria Korhonen, Matti Ras, Robin H.A. Vuola, Jyrki Franssila, Sami Kankuri, Esko |
description | [Display omitted]
Physiological oxygen levels within the tissue microenvironment are usually lower than 14%, in stem cell niches these levels can be as low as 0–1%. In cell cultures, such low oxygen levels are usually mimicked by altering the global culture environment either by O2 removal (vacuum or oxygen absorption) or by N2 supplementation for O2 replacement. To generate a targeted cellular hypoxic microenvironment under ambient atmospheric conditions, we characterised the ability of the dissolved oxygen-depleting sodium sulfite to generate an in-liquid oxygen sink. We utilised a microfluidic design to place the cultured cells in the vertical oxygen gradient and to physically separate the cells from the liquid.
We demonstrate generation of a chemical in-liquid oxygen sink that modifies the surrounding O2 concentrations. O2 level control in the sink-generated hypoxia gradient is achievable by varying the thickness of the polydimethylsiloxane membrane.
We show that intracellular hypoxia and hypoxia response element-dependent signalling is instigated in cells exposed to the microfluidic in-liquid O2 sink-generated hypoxia gradient. Moreover, we show that microfluidic flow controls site-specific microenvironmental kinetics of the chemical O2 sink reaction, which enables generation of intermittent hypoxia/re-oxygenation cycles.
The microfluidic O2 sink chip targets hypoxia to the cell culture microenvironment exposed to the microfluidic channel architecture solely by depleting O2 while other sites in the same culture well remain unaffected. Thus, responses of both hypoxic and bystander cells can be characterised. Moreover, control of microfluidic flow enables generation of intermittent hypoxia or hypoxia/re-oxygenation cycles.
Specific manipulation of oxygen concentrations in cultured cells’ microenvironment is important when mimicking low-oxygen tissue conditions and pathologies such as tissue infarction or cancer. We utilised a sodium sulfite-based in-liquid chemical reaction to consume dissolved oxygen. When this liquid was pumped into a microfluidic channel, lowered oxygen levels could be measured outside the channel through a polydimethylsiloxane PDMS membrane allowing only for gaseous exchange. We then utilised this setup to deplete oxygen from the microenvironment of cultured cells, and showed that cells responded to hypoxia on molecular level. Our setup can be used for specifically removing oxygen from the cell culture microenvironment for experimen |
doi_str_mv | 10.1016/j.actbio.2018.04.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2025310082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706118301971</els_id><sourcerecordid>2087381634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-89462ba04b411c27e64357d80b39b7745617b56466fb54e048c661e76599c7723</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhomxsR_6D4whceNmpsAwwGxMmqZakybd1DUB5tyW6wxcgbnp_fcy3urChSsOyfOej_dF6D0lLSVUXG5b44r1sWWEqpbwlhD5Cp1RJVUje6Fe11py1kgi6Ck6z3lLSKcoU2_QKRsEH0QnztD-Cs_epbiZFj96h-Pz4RECzj78wCVil8AUwAYXkx6hwIgdTNMymYSfDrv4XBW_5RD2PsUwQyh4CSMkbGbr158pc8y7J0gVdTGMvvgY8lt0sjFThncv7wX6_uXm4fq2ubv_-u366q5xXHalUQMXzBrCLafUMQmCd70cFbHdYKXkvaDS9oILsbE9B8KVE4KCFP0wOClZd4E-HfvuUvy5QC569nk9wQSIS9aMsL6jhKgV_fgPuo1LCnW7SilZrRMdrxQ_UvXonBNs9C752aSDpkSvueitPuai11w04brmUmUfXpovdobxr-hPEBX4fASgurH3kHR21T8Ho0_gih6j__-EX-MioMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087381634</pqid></control><display><type>article</type><title>A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Barmaki, Samineh ; Jokinen, Ville ; Obermaier, Daniela ; Blokhina, Daria ; Korhonen, Matti ; Ras, Robin H.A. ; Vuola, Jyrki ; Franssila, Sami ; Kankuri, Esko</creator><creatorcontrib>Barmaki, Samineh ; Jokinen, Ville ; Obermaier, Daniela ; Blokhina, Daria ; Korhonen, Matti ; Ras, Robin H.A. ; Vuola, Jyrki ; Franssila, Sami ; Kankuri, Esko</creatorcontrib><description>[Display omitted]
Physiological oxygen levels within the tissue microenvironment are usually lower than 14%, in stem cell niches these levels can be as low as 0–1%. In cell cultures, such low oxygen levels are usually mimicked by altering the global culture environment either by O2 removal (vacuum or oxygen absorption) or by N2 supplementation for O2 replacement. To generate a targeted cellular hypoxic microenvironment under ambient atmospheric conditions, we characterised the ability of the dissolved oxygen-depleting sodium sulfite to generate an in-liquid oxygen sink. We utilised a microfluidic design to place the cultured cells in the vertical oxygen gradient and to physically separate the cells from the liquid.
We demonstrate generation of a chemical in-liquid oxygen sink that modifies the surrounding O2 concentrations. O2 level control in the sink-generated hypoxia gradient is achievable by varying the thickness of the polydimethylsiloxane membrane.
We show that intracellular hypoxia and hypoxia response element-dependent signalling is instigated in cells exposed to the microfluidic in-liquid O2 sink-generated hypoxia gradient. Moreover, we show that microfluidic flow controls site-specific microenvironmental kinetics of the chemical O2 sink reaction, which enables generation of intermittent hypoxia/re-oxygenation cycles.
The microfluidic O2 sink chip targets hypoxia to the cell culture microenvironment exposed to the microfluidic channel architecture solely by depleting O2 while other sites in the same culture well remain unaffected. Thus, responses of both hypoxic and bystander cells can be characterised. Moreover, control of microfluidic flow enables generation of intermittent hypoxia or hypoxia/re-oxygenation cycles.
Specific manipulation of oxygen concentrations in cultured cells’ microenvironment is important when mimicking low-oxygen tissue conditions and pathologies such as tissue infarction or cancer. We utilised a sodium sulfite-based in-liquid chemical reaction to consume dissolved oxygen. When this liquid was pumped into a microfluidic channel, lowered oxygen levels could be measured outside the channel through a polydimethylsiloxane PDMS membrane allowing only for gaseous exchange. We then utilised this setup to deplete oxygen from the microenvironment of cultured cells, and showed that cells responded to hypoxia on molecular level. Our setup can be used for specifically removing oxygen from the cell culture microenvironment for experimental purposes and for generating a low oxygen environment that better mimics the cells’ original tissue environments.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2018.04.007</identifier><identifier>PMID: 29649636</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Atmospheric conditions ; Biomedical materials ; Cancer ; Cattle ; Cell culture ; Cell Culture Techniques - methods ; Cell Hypoxia ; Chemical reactions ; Depletion ; Dissolved oxygen ; Hypoxia ; Infarction ; Intracellular signalling ; Kinetics ; Liquid oxygen ; Microenvironment ; Microfluidic Analytical Techniques - methods ; Microfluidic chip ; Microfluidics ; Mimicry ; Organic chemistry ; Oxygen ; Oxygen depletion ; Oxygenation ; Polydimethylsiloxane ; Reaction kinetics ; Silicone resins ; Sodium ; Sodium sulfite ; Stem Cell Niche ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Sulfite ; Supplements ; Tissue engineering ; Vacuum</subject><ispartof>Acta biomaterialia, 2018-06, Vol.73, p.167-179</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-89462ba04b411c27e64357d80b39b7745617b56466fb54e048c661e76599c7723</citedby><cites>FETCH-LOGICAL-c473t-89462ba04b411c27e64357d80b39b7745617b56466fb54e048c661e76599c7723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2018.04.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29649636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barmaki, Samineh</creatorcontrib><creatorcontrib>Jokinen, Ville</creatorcontrib><creatorcontrib>Obermaier, Daniela</creatorcontrib><creatorcontrib>Blokhina, Daria</creatorcontrib><creatorcontrib>Korhonen, Matti</creatorcontrib><creatorcontrib>Ras, Robin H.A.</creatorcontrib><creatorcontrib>Vuola, Jyrki</creatorcontrib><creatorcontrib>Franssila, Sami</creatorcontrib><creatorcontrib>Kankuri, Esko</creatorcontrib><title>A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Physiological oxygen levels within the tissue microenvironment are usually lower than 14%, in stem cell niches these levels can be as low as 0–1%. In cell cultures, such low oxygen levels are usually mimicked by altering the global culture environment either by O2 removal (vacuum or oxygen absorption) or by N2 supplementation for O2 replacement. To generate a targeted cellular hypoxic microenvironment under ambient atmospheric conditions, we characterised the ability of the dissolved oxygen-depleting sodium sulfite to generate an in-liquid oxygen sink. We utilised a microfluidic design to place the cultured cells in the vertical oxygen gradient and to physically separate the cells from the liquid.
We demonstrate generation of a chemical in-liquid oxygen sink that modifies the surrounding O2 concentrations. O2 level control in the sink-generated hypoxia gradient is achievable by varying the thickness of the polydimethylsiloxane membrane.
We show that intracellular hypoxia and hypoxia response element-dependent signalling is instigated in cells exposed to the microfluidic in-liquid O2 sink-generated hypoxia gradient. Moreover, we show that microfluidic flow controls site-specific microenvironmental kinetics of the chemical O2 sink reaction, which enables generation of intermittent hypoxia/re-oxygenation cycles.
The microfluidic O2 sink chip targets hypoxia to the cell culture microenvironment exposed to the microfluidic channel architecture solely by depleting O2 while other sites in the same culture well remain unaffected. Thus, responses of both hypoxic and bystander cells can be characterised. Moreover, control of microfluidic flow enables generation of intermittent hypoxia or hypoxia/re-oxygenation cycles.
Specific manipulation of oxygen concentrations in cultured cells’ microenvironment is important when mimicking low-oxygen tissue conditions and pathologies such as tissue infarction or cancer. We utilised a sodium sulfite-based in-liquid chemical reaction to consume dissolved oxygen. When this liquid was pumped into a microfluidic channel, lowered oxygen levels could be measured outside the channel through a polydimethylsiloxane PDMS membrane allowing only for gaseous exchange. We then utilised this setup to deplete oxygen from the microenvironment of cultured cells, and showed that cells responded to hypoxia on molecular level. Our setup can be used for specifically removing oxygen from the cell culture microenvironment for experimental purposes and for generating a low oxygen environment that better mimics the cells’ original tissue environments.</description><subject>Animals</subject><subject>Atmospheric conditions</subject><subject>Biomedical materials</subject><subject>Cancer</subject><subject>Cattle</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Hypoxia</subject><subject>Chemical reactions</subject><subject>Depletion</subject><subject>Dissolved oxygen</subject><subject>Hypoxia</subject><subject>Infarction</subject><subject>Intracellular signalling</subject><subject>Kinetics</subject><subject>Liquid oxygen</subject><subject>Microenvironment</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidic chip</subject><subject>Microfluidics</subject><subject>Mimicry</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Oxygen depletion</subject><subject>Oxygenation</subject><subject>Polydimethylsiloxane</subject><subject>Reaction kinetics</subject><subject>Silicone resins</subject><subject>Sodium</subject><subject>Sodium sulfite</subject><subject>Stem Cell Niche</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Sulfite</subject><subject>Supplements</subject><subject>Tissue engineering</subject><subject>Vacuum</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vFSEUhomxsR_6D4whceNmpsAwwGxMmqZakybd1DUB5tyW6wxcgbnp_fcy3urChSsOyfOej_dF6D0lLSVUXG5b44r1sWWEqpbwlhD5Cp1RJVUje6Fe11py1kgi6Ck6z3lLSKcoU2_QKRsEH0QnztD-Cs_epbiZFj96h-Pz4RECzj78wCVil8AUwAYXkx6hwIgdTNMymYSfDrv4XBW_5RD2PsUwQyh4CSMkbGbr158pc8y7J0gVdTGMvvgY8lt0sjFThncv7wX6_uXm4fq2ubv_-u366q5xXHalUQMXzBrCLafUMQmCd70cFbHdYKXkvaDS9oILsbE9B8KVE4KCFP0wOClZd4E-HfvuUvy5QC569nk9wQSIS9aMsL6jhKgV_fgPuo1LCnW7SilZrRMdrxQ_UvXonBNs9C752aSDpkSvueitPuai11w04brmUmUfXpovdobxr-hPEBX4fASgurH3kHR21T8Ho0_gih6j__-EX-MioMQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Barmaki, Samineh</creator><creator>Jokinen, Ville</creator><creator>Obermaier, Daniela</creator><creator>Blokhina, Daria</creator><creator>Korhonen, Matti</creator><creator>Ras, Robin H.A.</creator><creator>Vuola, Jyrki</creator><creator>Franssila, Sami</creator><creator>Kankuri, Esko</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20180601</creationdate><title>A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions</title><author>Barmaki, Samineh ; Jokinen, Ville ; Obermaier, Daniela ; Blokhina, Daria ; Korhonen, Matti ; Ras, Robin H.A. ; Vuola, Jyrki ; Franssila, Sami ; Kankuri, Esko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-89462ba04b411c27e64357d80b39b7745617b56466fb54e048c661e76599c7723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Atmospheric conditions</topic><topic>Biomedical materials</topic><topic>Cancer</topic><topic>Cattle</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Hypoxia</topic><topic>Chemical reactions</topic><topic>Depletion</topic><topic>Dissolved oxygen</topic><topic>Hypoxia</topic><topic>Infarction</topic><topic>Intracellular signalling</topic><topic>Kinetics</topic><topic>Liquid oxygen</topic><topic>Microenvironment</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidic chip</topic><topic>Microfluidics</topic><topic>Mimicry</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Oxygen depletion</topic><topic>Oxygenation</topic><topic>Polydimethylsiloxane</topic><topic>Reaction kinetics</topic><topic>Silicone resins</topic><topic>Sodium</topic><topic>Sodium sulfite</topic><topic>Stem Cell Niche</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Sulfite</topic><topic>Supplements</topic><topic>Tissue engineering</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barmaki, Samineh</creatorcontrib><creatorcontrib>Jokinen, Ville</creatorcontrib><creatorcontrib>Obermaier, Daniela</creatorcontrib><creatorcontrib>Blokhina, Daria</creatorcontrib><creatorcontrib>Korhonen, Matti</creatorcontrib><creatorcontrib>Ras, Robin H.A.</creatorcontrib><creatorcontrib>Vuola, Jyrki</creatorcontrib><creatorcontrib>Franssila, Sami</creatorcontrib><creatorcontrib>Kankuri, Esko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barmaki, Samineh</au><au>Jokinen, Ville</au><au>Obermaier, Daniela</au><au>Blokhina, Daria</au><au>Korhonen, Matti</au><au>Ras, Robin H.A.</au><au>Vuola, Jyrki</au><au>Franssila, Sami</au><au>Kankuri, Esko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>73</volume><spage>167</spage><epage>179</epage><pages>167-179</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Physiological oxygen levels within the tissue microenvironment are usually lower than 14%, in stem cell niches these levels can be as low as 0–1%. In cell cultures, such low oxygen levels are usually mimicked by altering the global culture environment either by O2 removal (vacuum or oxygen absorption) or by N2 supplementation for O2 replacement. To generate a targeted cellular hypoxic microenvironment under ambient atmospheric conditions, we characterised the ability of the dissolved oxygen-depleting sodium sulfite to generate an in-liquid oxygen sink. We utilised a microfluidic design to place the cultured cells in the vertical oxygen gradient and to physically separate the cells from the liquid.
We demonstrate generation of a chemical in-liquid oxygen sink that modifies the surrounding O2 concentrations. O2 level control in the sink-generated hypoxia gradient is achievable by varying the thickness of the polydimethylsiloxane membrane.
We show that intracellular hypoxia and hypoxia response element-dependent signalling is instigated in cells exposed to the microfluidic in-liquid O2 sink-generated hypoxia gradient. Moreover, we show that microfluidic flow controls site-specific microenvironmental kinetics of the chemical O2 sink reaction, which enables generation of intermittent hypoxia/re-oxygenation cycles.
The microfluidic O2 sink chip targets hypoxia to the cell culture microenvironment exposed to the microfluidic channel architecture solely by depleting O2 while other sites in the same culture well remain unaffected. Thus, responses of both hypoxic and bystander cells can be characterised. Moreover, control of microfluidic flow enables generation of intermittent hypoxia or hypoxia/re-oxygenation cycles.
Specific manipulation of oxygen concentrations in cultured cells’ microenvironment is important when mimicking low-oxygen tissue conditions and pathologies such as tissue infarction or cancer. We utilised a sodium sulfite-based in-liquid chemical reaction to consume dissolved oxygen. When this liquid was pumped into a microfluidic channel, lowered oxygen levels could be measured outside the channel through a polydimethylsiloxane PDMS membrane allowing only for gaseous exchange. We then utilised this setup to deplete oxygen from the microenvironment of cultured cells, and showed that cells responded to hypoxia on molecular level. Our setup can be used for specifically removing oxygen from the cell culture microenvironment for experimental purposes and for generating a low oxygen environment that better mimics the cells’ original tissue environments.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29649636</pmid><doi>10.1016/j.actbio.2018.04.007</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2018-06, Vol.73, p.167-179 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2025310082 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Atmospheric conditions Biomedical materials Cancer Cattle Cell culture Cell Culture Techniques - methods Cell Hypoxia Chemical reactions Depletion Dissolved oxygen Hypoxia Infarction Intracellular signalling Kinetics Liquid oxygen Microenvironment Microfluidic Analytical Techniques - methods Microfluidic chip Microfluidics Mimicry Organic chemistry Oxygen Oxygen depletion Oxygenation Polydimethylsiloxane Reaction kinetics Silicone resins Sodium Sodium sulfite Stem Cell Niche Stem cells Stem Cells - cytology Stem Cells - metabolism Sulfite Supplements Tissue engineering Vacuum |
title | A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microfluidic%20oxygen%20sink%20to%20create%20a%20targeted%20cellular%20hypoxic%20microenvironment%20under%20ambient%20atmospheric%20conditions&rft.jtitle=Acta%20biomaterialia&rft.au=Barmaki,%20Samineh&rft.date=2018-06-01&rft.volume=73&rft.spage=167&rft.epage=179&rft.pages=167-179&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2018.04.007&rft_dat=%3Cproquest_cross%3E2087381634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087381634&rft_id=info:pmid/29649636&rft_els_id=S1742706118301971&rfr_iscdi=true |