Structural basis for ATP-dependent chromatin remodelling by the INO80 complex

In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers 1 – 3 such as the 15-subunit INO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2018-04, Vol.556 (7701), p.386-390
Hauptverfasser: Eustermann, Sebastian, Schall, Kevin, Kostrewa, Dirk, Lakomek, Kristina, Strauss, Mike, Moldt, Manuela, Hopfner, Karl-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 7701
container_start_page 386
container_title Nature (London)
container_volume 556
creator Eustermann, Sebastian
Schall, Kevin
Kostrewa, Dirk
Lakomek, Kristina
Strauss, Mike
Moldt, Manuela
Hopfner, Karl-Peter
description In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers 1 – 3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and −1 nucleosomes at promoter DNA 5 – 8 . The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA + ATPase heterohexamer is an assembly scaffold for the complex and acts as a ‘stator’ for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location −6, unwraps approximately 15 base pairs, disrupts the H2A–DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations −2 and −3 to act as a counter grip for the motor, on the other side of the H2A–H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A–H2B near the ‘acidic patch’. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A–H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A–H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange. Cryo-electron microscopy structures of the evolutionarily conserved core of a fungal INO80 complex bound to the nucleosomal substrate reveal the mechanism underlying nucleosome sliding and histone editing used by this ATP-dependent chromatin remodeller.
doi_str_mv 10.1038/s41586-018-0029-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2024472482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572639377</galeid><sourcerecordid>A572639377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-ec901b34561f95f033a3022b81c63074b5cc48713c4e3ca186a5c01776e356b73</originalsourceid><addsrcrecordid>eNp1kk9v1DAQxS0EotvCB-CCInqBQ4od_81xVUFZqVBEy9lynEmaKrG3tiN1vz1ebaEsWuSDpZnfvBk9PYTeEHxGMFUfIyNciRITVWJc1eXmGVoQJkXJhJLP0SIXc0dRcYSOY7zDGHMi2Ut0VNWCUY7rBfp6ncJs0xzMWDQmDrHofCiWN9_LFtbgWnCpsLfBTyYNrggw-RbGcXB90WyKdAvF6tuVwoX103qEh1foRWfGCK8f_xP08_Onm_Mv5eXVxep8eVlarkgqwdaYNJRxQbqad5hSQ3FVNYpYQbFkDbeWKUmoZUCtIUoYbjGRUgDlopH0BL3f6a6Dv58hJj0N0ebDjAM_R13hijFZMVVl9PQf9M7PweXrMsVFXltT-kT1ZgQ9uM6nYOxWVC-5rAStqdyuLQ9QPTjI9nkH3ZDLe_y7A7xdD_f6b-jsAJRfC9NgD6p-2BvITIKH1Js5Rr26_rHPkh1rg48xQKfXYZhM2GiC9TZDepchnTOktxnSmzzz9tGxuZmg_TPxOzQZqHZAzC3XQ3iy9P-qvwBBCct_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056022933</pqid></control><display><type>article</type><title>Structural basis for ATP-dependent chromatin remodelling by the INO80 complex</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Eustermann, Sebastian ; Schall, Kevin ; Kostrewa, Dirk ; Lakomek, Kristina ; Strauss, Mike ; Moldt, Manuela ; Hopfner, Karl-Peter</creator><creatorcontrib>Eustermann, Sebastian ; Schall, Kevin ; Kostrewa, Dirk ; Lakomek, Kristina ; Strauss, Mike ; Moldt, Manuela ; Hopfner, Karl-Peter</creatorcontrib><description>In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers 1 – 3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and −1 nucleosomes at promoter DNA 5 – 8 . The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA + ATPase heterohexamer is an assembly scaffold for the complex and acts as a ‘stator’ for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location −6, unwraps approximately 15 base pairs, disrupts the H2A–DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations −2 and −3 to act as a counter grip for the motor, on the other side of the H2A–H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A–H2B near the ‘acidic patch’. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A–H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A–H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange. Cryo-electron microscopy structures of the evolutionarily conserved core of a fungal INO80 complex bound to the nucleosomal substrate reveal the mechanism underlying nucleosome sliding and histone editing used by this ATP-dependent chromatin remodeller.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0029-y</identifier><identifier>PMID: 29643509</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/337/100/102 ; 631/535/1258/1259 ; 82/16 ; 82/29 ; Actin ; Adenosine triphosphatase ; Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; Analysis ; ATPases ; Base pairs ; Biochemistry ; Chaetomium - enzymology ; Chaetomium thermophilum ; Chromatin ; Chromatin Assembly and Disassembly ; Chromatin remodeling ; Chromosomal Proteins, Non-Histone - chemistry ; Chromosomal Proteins, Non-Histone - metabolism ; Cryoelectron Microscopy ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA - ultrastructure ; DNA biosynthesis ; DNA Helicases - chemistry ; DNA Helicases - metabolism ; DNA Helicases - ultrastructure ; DNA repair ; Editing ; Electron microscopy ; Fungal Proteins ; Fungi ; Gene expression ; Genes ; Histone H2A ; Histones - chemistry ; Histones - metabolism ; Histones - ultrastructure ; Humanities and Social Sciences ; Humans ; Letter ; Macromolecules ; Microscopy ; Models, Molecular ; Motor activity ; multidisciplinary ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Multiprotein Complexes - ultrastructure ; Muscle proteins ; Nuclei ; Nucleosomes ; Nucleosomes - chemistry ; Nucleosomes - metabolism ; Nucleosomes - ultrastructure ; Protein Binding ; Proteins ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary) ; Structure-Activity Relationship ; Superhelical DNA ; Translocation</subject><ispartof>Nature (London), 2018-04, Vol.556 (7701), p.386-390</ispartof><rights>Macmillan Publishers Ltd., part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 19, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-ec901b34561f95f033a3022b81c63074b5cc48713c4e3ca186a5c01776e356b73</citedby><cites>FETCH-LOGICAL-c581t-ec901b34561f95f033a3022b81c63074b5cc48713c4e3ca186a5c01776e356b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0029-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0029-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29643509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eustermann, Sebastian</creatorcontrib><creatorcontrib>Schall, Kevin</creatorcontrib><creatorcontrib>Kostrewa, Dirk</creatorcontrib><creatorcontrib>Lakomek, Kristina</creatorcontrib><creatorcontrib>Strauss, Mike</creatorcontrib><creatorcontrib>Moldt, Manuela</creatorcontrib><creatorcontrib>Hopfner, Karl-Peter</creatorcontrib><title>Structural basis for ATP-dependent chromatin remodelling by the INO80 complex</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers 1 – 3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and −1 nucleosomes at promoter DNA 5 – 8 . The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA + ATPase heterohexamer is an assembly scaffold for the complex and acts as a ‘stator’ for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location −6, unwraps approximately 15 base pairs, disrupts the H2A–DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations −2 and −3 to act as a counter grip for the motor, on the other side of the H2A–H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A–H2B near the ‘acidic patch’. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A–H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A–H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange. Cryo-electron microscopy structures of the evolutionarily conserved core of a fungal INO80 complex bound to the nucleosomal substrate reveal the mechanism underlying nucleosome sliding and histone editing used by this ATP-dependent chromatin remodeller.</description><subject>101/28</subject><subject>631/337/100/102</subject><subject>631/535/1258/1259</subject><subject>82/16</subject><subject>82/29</subject><subject>Actin</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>ATPases</subject><subject>Base pairs</subject><subject>Biochemistry</subject><subject>Chaetomium - enzymology</subject><subject>Chaetomium thermophilum</subject><subject>Chromatin</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Chromatin remodeling</subject><subject>Chromosomal Proteins, Non-Histone - chemistry</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cryoelectron Microscopy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA - ultrastructure</subject><subject>DNA biosynthesis</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Helicases - ultrastructure</subject><subject>DNA repair</subject><subject>Editing</subject><subject>Electron microscopy</subject><subject>Fungal Proteins</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Histone H2A</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Histones - ultrastructure</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Letter</subject><subject>Macromolecules</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Motor activity</subject><subject>multidisciplinary</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Multiprotein Complexes - ultrastructure</subject><subject>Muscle proteins</subject><subject>Nuclei</subject><subject>Nucleosomes</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - metabolism</subject><subject>Nucleosomes - ultrastructure</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structure-Activity Relationship</subject><subject>Superhelical DNA</subject><subject>Translocation</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kk9v1DAQxS0EotvCB-CCInqBQ4od_81xVUFZqVBEy9lynEmaKrG3tiN1vz1ebaEsWuSDpZnfvBk9PYTeEHxGMFUfIyNciRITVWJc1eXmGVoQJkXJhJLP0SIXc0dRcYSOY7zDGHMi2Ut0VNWCUY7rBfp6ncJs0xzMWDQmDrHofCiWN9_LFtbgWnCpsLfBTyYNrggw-RbGcXB90WyKdAvF6tuVwoX103qEh1foRWfGCK8f_xP08_Onm_Mv5eXVxep8eVlarkgqwdaYNJRxQbqad5hSQ3FVNYpYQbFkDbeWKUmoZUCtIUoYbjGRUgDlopH0BL3f6a6Dv58hJj0N0ebDjAM_R13hijFZMVVl9PQf9M7PweXrMsVFXltT-kT1ZgQ9uM6nYOxWVC-5rAStqdyuLQ9QPTjI9nkH3ZDLe_y7A7xdD_f6b-jsAJRfC9NgD6p-2BvITIKH1Js5Rr26_rHPkh1rg48xQKfXYZhM2GiC9TZDepchnTOktxnSmzzz9tGxuZmg_TPxOzQZqHZAzC3XQ3iy9P-qvwBBCct_</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Eustermann, Sebastian</creator><creator>Schall, Kevin</creator><creator>Kostrewa, Dirk</creator><creator>Lakomek, Kristina</creator><creator>Strauss, Mike</creator><creator>Moldt, Manuela</creator><creator>Hopfner, Karl-Peter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>Structural basis for ATP-dependent chromatin remodelling by the INO80 complex</title><author>Eustermann, Sebastian ; Schall, Kevin ; Kostrewa, Dirk ; Lakomek, Kristina ; Strauss, Mike ; Moldt, Manuela ; Hopfner, Karl-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-ec901b34561f95f033a3022b81c63074b5cc48713c4e3ca186a5c01776e356b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>101/28</topic><topic>631/337/100/102</topic><topic>631/535/1258/1259</topic><topic>82/16</topic><topic>82/29</topic><topic>Actin</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>ATPases</topic><topic>Base pairs</topic><topic>Biochemistry</topic><topic>Chaetomium - enzymology</topic><topic>Chaetomium thermophilum</topic><topic>Chromatin</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Chromatin remodeling</topic><topic>Chromosomal Proteins, Non-Histone - chemistry</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cryoelectron Microscopy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA - ultrastructure</topic><topic>DNA biosynthesis</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Helicases - ultrastructure</topic><topic>DNA repair</topic><topic>Editing</topic><topic>Electron microscopy</topic><topic>Fungal Proteins</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Histone H2A</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Histones - ultrastructure</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Letter</topic><topic>Macromolecules</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Motor activity</topic><topic>multidisciplinary</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Multiprotein Complexes - ultrastructure</topic><topic>Muscle proteins</topic><topic>Nuclei</topic><topic>Nucleosomes</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - metabolism</topic><topic>Nucleosomes - ultrastructure</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structure-Activity Relationship</topic><topic>Superhelical DNA</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eustermann, Sebastian</creatorcontrib><creatorcontrib>Schall, Kevin</creatorcontrib><creatorcontrib>Kostrewa, Dirk</creatorcontrib><creatorcontrib>Lakomek, Kristina</creatorcontrib><creatorcontrib>Strauss, Mike</creatorcontrib><creatorcontrib>Moldt, Manuela</creatorcontrib><creatorcontrib>Hopfner, Karl-Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eustermann, Sebastian</au><au>Schall, Kevin</au><au>Kostrewa, Dirk</au><au>Lakomek, Kristina</au><au>Strauss, Mike</au><au>Moldt, Manuela</au><au>Hopfner, Karl-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for ATP-dependent chromatin remodelling by the INO80 complex</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-04</date><risdate>2018</risdate><volume>556</volume><issue>7701</issue><spage>386</spage><epage>390</epage><pages>386-390</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers 1 – 3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and −1 nucleosomes at promoter DNA 5 – 8 . The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA + ATPase heterohexamer is an assembly scaffold for the complex and acts as a ‘stator’ for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location −6, unwraps approximately 15 base pairs, disrupts the H2A–DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations −2 and −3 to act as a counter grip for the motor, on the other side of the H2A–H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A–H2B near the ‘acidic patch’. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A–H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A–H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange. Cryo-electron microscopy structures of the evolutionarily conserved core of a fungal INO80 complex bound to the nucleosomal substrate reveal the mechanism underlying nucleosome sliding and histone editing used by this ATP-dependent chromatin remodeller.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29643509</pmid><doi>10.1038/s41586-018-0029-y</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2018-04, Vol.556 (7701), p.386-390
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2024472482
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 101/28
631/337/100/102
631/535/1258/1259
82/16
82/29
Actin
Adenosine triphosphatase
Adenosine Triphosphate - metabolism
Amino Acid Sequence
Analysis
ATPases
Base pairs
Biochemistry
Chaetomium - enzymology
Chaetomium thermophilum
Chromatin
Chromatin Assembly and Disassembly
Chromatin remodeling
Chromosomal Proteins, Non-Histone - chemistry
Chromosomal Proteins, Non-Histone - metabolism
Cryoelectron Microscopy
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - metabolism
DNA - ultrastructure
DNA biosynthesis
DNA Helicases - chemistry
DNA Helicases - metabolism
DNA Helicases - ultrastructure
DNA repair
Editing
Electron microscopy
Fungal Proteins
Fungi
Gene expression
Genes
Histone H2A
Histones - chemistry
Histones - metabolism
Histones - ultrastructure
Humanities and Social Sciences
Humans
Letter
Macromolecules
Microscopy
Models, Molecular
Motor activity
multidisciplinary
Multiprotein Complexes - chemistry
Multiprotein Complexes - metabolism
Multiprotein Complexes - ultrastructure
Muscle proteins
Nuclei
Nucleosomes
Nucleosomes - chemistry
Nucleosomes - metabolism
Nucleosomes - ultrastructure
Protein Binding
Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Science
Science (multidisciplinary)
Structure-Activity Relationship
Superhelical DNA
Translocation
title Structural basis for ATP-dependent chromatin remodelling by the INO80 complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20ATP-dependent%20chromatin%20remodelling%20by%20the%20INO80%20complex&rft.jtitle=Nature%20(London)&rft.au=Eustermann,%20Sebastian&rft.date=2018-04&rft.volume=556&rft.issue=7701&rft.spage=386&rft.epage=390&rft.pages=386-390&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0029-y&rft_dat=%3Cgale_proqu%3EA572639377%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056022933&rft_id=info:pmid/29643509&rft_galeid=A572639377&rfr_iscdi=true