Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu

Elongation factor Tu (EF-Tu), the protein responsible for delivering aminoacyl-tRNAs (aa-tRNAs) to ribosomal A site during translation, belongs to the group of guanosine-nucleotide (GTP/GDP) binding proteins. Its active ‘on’-state corresponds to the GTP-bound form, while the inactive ‘off’-state cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2008-12, Vol.1784 (12), p.1908-1917
Hauptverfasser: Grigorenko, B.L., Shadrina, M.S., Topol, I.A., Collins, J.R., Nemukhin, A.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1917
container_issue 12
container_start_page 1908
container_title Biochimica et biophysica acta
container_volume 1784
creator Grigorenko, B.L.
Shadrina, M.S.
Topol, I.A.
Collins, J.R.
Nemukhin, A.V.
description Elongation factor Tu (EF-Tu), the protein responsible for delivering aminoacyl-tRNAs (aa-tRNAs) to ribosomal A site during translation, belongs to the group of guanosine-nucleotide (GTP/GDP) binding proteins. Its active ‘on’-state corresponds to the GTP-bound form, while the inactive ‘off’-state corresponds to the GDP-bound form. In this work we focus on the chemical step, GTP + H 2O → GDP + Pi, of the hydrolysis mechanism. We apply molecular modeling tools including molecular dynamics simulations and the combined quantum mechanical–molecular mechanical calculations for estimates of reaction energy profiles for two possible arrangements of switch II regions of EF-Tu. In the first case we presumably mimic binding of the ternary complex EF-Tu·GTP·aa-tRNA to the ribosome and allow the histidine (His85) side chain of the protein to approach the reaction active site. In the second case, corresponding to the GTP hydrolysis by EF-Tu alone, the side chain of His85 stays away from the active site, and the chemical reaction GTP + H 2O → GDP + Pi proceeds without participation of the histidine but through water molecules. In agreement with the experimental observations which distinguish rate constants for the fast chemical reaction in EF-Tu·GTP·aa-tRNA·ribosome and the slow spontaneous GTP hydrolysis in EF-Tu, we show that the activation energy barrier for the first scenario is considerably lower compared to that of the second case.
doi_str_mv 10.1016/j.bbapap.2008.08.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_20243200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570963908002458</els_id><sourcerecordid>20243200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-e145fd4ea7742a42b1cddc89407fc6bed7e73728ea59b520b75b2388bd1647a33</originalsourceid><addsrcrecordid>eNqFkUGL1TAUhYsozjj6D0SyEl30maRp024EGXQURnTxXIeb5PY1j7apSTpQf72t7-HoRuFCQu7JyT35suw5oztGWfXmuNMaJph2nNJ6txUtHmSXrJZ1zkQpHq77UtK8qYrmInsS45FSTqUsH2cXq0gWjWwus-kzmg5GFwfiW5I6JKbDwRnoSUw4kdaHX6eHGUYf3YgkBTd1Pk4dJCSvbvZfX5NuscH3S3SRGEjQLz_QEr0Q7P14gOT8SFowabXaz0-zRy30EZ-d16vs24f3--uP-e2Xm0_X725zIxqeclwjtFYgSCk4CK6ZsdbUjaCyNZVGK1EWktcIZaNLTrUsNS_qWltWCQlFcZW9PflOsx7QGhxTgF5NwQ0QFuXBqb87o-vUwd8pXnHGaLkavDwbBP99xpjU4KLBvocR_RxV1ciy4JX8r5BTLooV0ioUJ6EJPsaA7e9pGFUbU3VUJ6ZqY6q2oluSF38mub90hngfFdf_vHMYVDQOR4PWBTRJWe_-_cJPZVS3MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20243200</pqid></control><display><type>article</type><title>Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Grigorenko, B.L. ; Shadrina, M.S. ; Topol, I.A. ; Collins, J.R. ; Nemukhin, A.V.</creator><creatorcontrib>Grigorenko, B.L. ; Shadrina, M.S. ; Topol, I.A. ; Collins, J.R. ; Nemukhin, A.V.</creatorcontrib><description>Elongation factor Tu (EF-Tu), the protein responsible for delivering aminoacyl-tRNAs (aa-tRNAs) to ribosomal A site during translation, belongs to the group of guanosine-nucleotide (GTP/GDP) binding proteins. Its active ‘on’-state corresponds to the GTP-bound form, while the inactive ‘off’-state corresponds to the GDP-bound form. In this work we focus on the chemical step, GTP + H 2O → GDP + Pi, of the hydrolysis mechanism. We apply molecular modeling tools including molecular dynamics simulations and the combined quantum mechanical–molecular mechanical calculations for estimates of reaction energy profiles for two possible arrangements of switch II regions of EF-Tu. In the first case we presumably mimic binding of the ternary complex EF-Tu·GTP·aa-tRNA to the ribosome and allow the histidine (His85) side chain of the protein to approach the reaction active site. In the second case, corresponding to the GTP hydrolysis by EF-Tu alone, the side chain of His85 stays away from the active site, and the chemical reaction GTP + H 2O → GDP + Pi proceeds without participation of the histidine but through water molecules. In agreement with the experimental observations which distinguish rate constants for the fast chemical reaction in EF-Tu·GTP·aa-tRNA·ribosome and the slow spontaneous GTP hydrolysis in EF-Tu, we show that the activation energy barrier for the first scenario is considerably lower compared to that of the second case.</description><identifier>ISSN: 1570-9639</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1878-1454</identifier><identifier>DOI: 10.1016/j.bbapap.2008.08.003</identifier><identifier>PMID: 18773979</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Catalysis ; EF-Tu protein ; Enzymatic mechanism ; GTP hydrolysis ; Guanosine Diphosphate - chemistry ; Guanosine Diphosphate - metabolism ; Guanosine Triphosphate - chemistry ; Guanosine Triphosphate - metabolism ; Hydrolysis ; Models, Chemical ; Molecular modeling ; Peptide Elongation Factor Tu - chemistry ; Peptide Elongation Factor Tu - metabolism ; Ribosomes - chemistry ; Ribosomes - metabolism ; RNA, Transfer, Amino Acyl - chemistry ; RNA, Transfer, Amino Acyl - metabolism ; Thermus thermophilus - enzymology</subject><ispartof>Biochimica et biophysica acta, 2008-12, Vol.1784 (12), p.1908-1917</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-e145fd4ea7742a42b1cddc89407fc6bed7e73728ea59b520b75b2388bd1647a33</citedby><cites>FETCH-LOGICAL-c492t-e145fd4ea7742a42b1cddc89407fc6bed7e73728ea59b520b75b2388bd1647a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1570963908002458$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18773979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigorenko, B.L.</creatorcontrib><creatorcontrib>Shadrina, M.S.</creatorcontrib><creatorcontrib>Topol, I.A.</creatorcontrib><creatorcontrib>Collins, J.R.</creatorcontrib><creatorcontrib>Nemukhin, A.V.</creatorcontrib><title>Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Elongation factor Tu (EF-Tu), the protein responsible for delivering aminoacyl-tRNAs (aa-tRNAs) to ribosomal A site during translation, belongs to the group of guanosine-nucleotide (GTP/GDP) binding proteins. Its active ‘on’-state corresponds to the GTP-bound form, while the inactive ‘off’-state corresponds to the GDP-bound form. In this work we focus on the chemical step, GTP + H 2O → GDP + Pi, of the hydrolysis mechanism. We apply molecular modeling tools including molecular dynamics simulations and the combined quantum mechanical–molecular mechanical calculations for estimates of reaction energy profiles for two possible arrangements of switch II regions of EF-Tu. In the first case we presumably mimic binding of the ternary complex EF-Tu·GTP·aa-tRNA to the ribosome and allow the histidine (His85) side chain of the protein to approach the reaction active site. In the second case, corresponding to the GTP hydrolysis by EF-Tu alone, the side chain of His85 stays away from the active site, and the chemical reaction GTP + H 2O → GDP + Pi proceeds without participation of the histidine but through water molecules. In agreement with the experimental observations which distinguish rate constants for the fast chemical reaction in EF-Tu·GTP·aa-tRNA·ribosome and the slow spontaneous GTP hydrolysis in EF-Tu, we show that the activation energy barrier for the first scenario is considerably lower compared to that of the second case.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Catalysis</subject><subject>EF-Tu protein</subject><subject>Enzymatic mechanism</subject><subject>GTP hydrolysis</subject><subject>Guanosine Diphosphate - chemistry</subject><subject>Guanosine Diphosphate - metabolism</subject><subject>Guanosine Triphosphate - chemistry</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Hydrolysis</subject><subject>Models, Chemical</subject><subject>Molecular modeling</subject><subject>Peptide Elongation Factor Tu - chemistry</subject><subject>Peptide Elongation Factor Tu - metabolism</subject><subject>Ribosomes - chemistry</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Transfer, Amino Acyl - chemistry</subject><subject>RNA, Transfer, Amino Acyl - metabolism</subject><subject>Thermus thermophilus - enzymology</subject><issn>1570-9639</issn><issn>0006-3002</issn><issn>1878-1454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUGL1TAUhYsozjj6D0SyEl30maRp024EGXQURnTxXIeb5PY1j7apSTpQf72t7-HoRuFCQu7JyT35suw5oztGWfXmuNMaJph2nNJ6txUtHmSXrJZ1zkQpHq77UtK8qYrmInsS45FSTqUsH2cXq0gWjWwus-kzmg5GFwfiW5I6JKbDwRnoSUw4kdaHX6eHGUYf3YgkBTd1Pk4dJCSvbvZfX5NuscH3S3SRGEjQLz_QEr0Q7P14gOT8SFowabXaz0-zRy30EZ-d16vs24f3--uP-e2Xm0_X725zIxqeclwjtFYgSCk4CK6ZsdbUjaCyNZVGK1EWktcIZaNLTrUsNS_qWltWCQlFcZW9PflOsx7QGhxTgF5NwQ0QFuXBqb87o-vUwd8pXnHGaLkavDwbBP99xpjU4KLBvocR_RxV1ciy4JX8r5BTLooV0ioUJ6EJPsaA7e9pGFUbU3VUJ6ZqY6q2oluSF38mub90hngfFdf_vHMYVDQOR4PWBTRJWe_-_cJPZVS3MA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Grigorenko, B.L.</creator><creator>Shadrina, M.S.</creator><creator>Topol, I.A.</creator><creator>Collins, J.R.</creator><creator>Nemukhin, A.V.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu</title><author>Grigorenko, B.L. ; Shadrina, M.S. ; Topol, I.A. ; Collins, J.R. ; Nemukhin, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-e145fd4ea7742a42b1cddc89407fc6bed7e73728ea59b520b75b2388bd1647a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Catalysis</topic><topic>EF-Tu protein</topic><topic>Enzymatic mechanism</topic><topic>GTP hydrolysis</topic><topic>Guanosine Diphosphate - chemistry</topic><topic>Guanosine Diphosphate - metabolism</topic><topic>Guanosine Triphosphate - chemistry</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Hydrolysis</topic><topic>Models, Chemical</topic><topic>Molecular modeling</topic><topic>Peptide Elongation Factor Tu - chemistry</topic><topic>Peptide Elongation Factor Tu - metabolism</topic><topic>Ribosomes - chemistry</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Transfer, Amino Acyl - chemistry</topic><topic>RNA, Transfer, Amino Acyl - metabolism</topic><topic>Thermus thermophilus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigorenko, B.L.</creatorcontrib><creatorcontrib>Shadrina, M.S.</creatorcontrib><creatorcontrib>Topol, I.A.</creatorcontrib><creatorcontrib>Collins, J.R.</creatorcontrib><creatorcontrib>Nemukhin, A.V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigorenko, B.L.</au><au>Shadrina, M.S.</au><au>Topol, I.A.</au><au>Collins, J.R.</au><au>Nemukhin, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>1784</volume><issue>12</issue><spage>1908</spage><epage>1917</epage><pages>1908-1917</pages><issn>1570-9639</issn><issn>0006-3002</issn><eissn>1878-1454</eissn><abstract>Elongation factor Tu (EF-Tu), the protein responsible for delivering aminoacyl-tRNAs (aa-tRNAs) to ribosomal A site during translation, belongs to the group of guanosine-nucleotide (GTP/GDP) binding proteins. Its active ‘on’-state corresponds to the GTP-bound form, while the inactive ‘off’-state corresponds to the GDP-bound form. In this work we focus on the chemical step, GTP + H 2O → GDP + Pi, of the hydrolysis mechanism. We apply molecular modeling tools including molecular dynamics simulations and the combined quantum mechanical–molecular mechanical calculations for estimates of reaction energy profiles for two possible arrangements of switch II regions of EF-Tu. In the first case we presumably mimic binding of the ternary complex EF-Tu·GTP·aa-tRNA to the ribosome and allow the histidine (His85) side chain of the protein to approach the reaction active site. In the second case, corresponding to the GTP hydrolysis by EF-Tu alone, the side chain of His85 stays away from the active site, and the chemical reaction GTP + H 2O → GDP + Pi proceeds without participation of the histidine but through water molecules. In agreement with the experimental observations which distinguish rate constants for the fast chemical reaction in EF-Tu·GTP·aa-tRNA·ribosome and the slow spontaneous GTP hydrolysis in EF-Tu, we show that the activation energy barrier for the first scenario is considerably lower compared to that of the second case.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>18773979</pmid><doi>10.1016/j.bbapap.2008.08.003</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-9639
ispartof Biochimica et biophysica acta, 2008-12, Vol.1784 (12), p.1908-1917
issn 1570-9639
0006-3002
1878-1454
language eng
recordid cdi_proquest_miscellaneous_20243200
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Catalysis
EF-Tu protein
Enzymatic mechanism
GTP hydrolysis
Guanosine Diphosphate - chemistry
Guanosine Diphosphate - metabolism
Guanosine Triphosphate - chemistry
Guanosine Triphosphate - metabolism
Hydrolysis
Models, Chemical
Molecular modeling
Peptide Elongation Factor Tu - chemistry
Peptide Elongation Factor Tu - metabolism
Ribosomes - chemistry
Ribosomes - metabolism
RNA, Transfer, Amino Acyl - chemistry
RNA, Transfer, Amino Acyl - metabolism
Thermus thermophilus - enzymology
title Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20the%20chemical%20step%20for%20the%20guanosine%20triphosphate%20(GTP)%20hydrolysis%20catalyzed%20by%20elongation%20factor%20Tu&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Grigorenko,%20B.L.&rft.date=2008-12-01&rft.volume=1784&rft.issue=12&rft.spage=1908&rft.epage=1917&rft.pages=1908-1917&rft.issn=1570-9639&rft.eissn=1878-1454&rft_id=info:doi/10.1016/j.bbapap.2008.08.003&rft_dat=%3Cproquest_pubme%3E20243200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20243200&rft_id=info:pmid/18773979&rft_els_id=S1570963908002458&rfr_iscdi=true